Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038633

RESUMO

Rapid compression experiments performed using a dynamic diamond anvil cell (dDAC) offer the opportunity to study compression rate-dependent phenomena, which provide critical knowledge of the phase transition kinetics of materials. However, direct probing of the structure evolution of materials is scarce and so far limited to the synchrotron based x-ray diffraction technique. Here, we present a time-resolved Raman spectroscopy technique to monitor the structural evolutions in a subsecond time resolution. Instead of applying a shutter-based synchronization scheme in previous work, we directly coupled and synchronized the spectrometers with the dDAC, providing sequential Raman data over a broad pressure range. The capability and versatility of this technique are verified by in situ observation of the phase transition processes of three rapid compressed samples. Not only the phase transition pressures but also the transition pathways are reproduced with good accuracy. This approach has the potential to serve as an important complement to x-ray diffraction applied to study the kinetics of phase transitions occurring on time scales of seconds and above.

2.
Sci Rep ; 13(1): 17573, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845245

RESUMO

The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the [Formula: see text] photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.

3.
ACS Appl Mater Interfaces ; 15(23): 28204-28214, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272408

RESUMO

Mechanoluminescence (ML) has received widespread attention because of potential application in stress sensors and imaging. However, pursuing highly efficient ML remains a challenge due to multifactorial limitations such as pressure and loading rate. Here, we systematically investigate pressure- and rate-dependent ML in Mn2+ and Eu3+ co-doped ZnS in a gigapascal pressure range by using a high-pressure dynamic diamond anvil cell and microsecond time-resolved fluorescent methods and demonstrate the giant tunability in both ML efficiency and wavelength. Compressed from ambient pressure to 11 GPa at different compression rates, ZnS: Mn2+, Eu3+ exhibits a volcano shape in ML emission efficiency with an optimum at ∼3.5 GPa and ∼211.1 GPa/s, at least 1000-fold higher than that measured in the MPa range. The pressure-dependent ML is accompanied with a tunable yellow-to-red emission color change. A combination of high-pressure X-ray diffraction and photoluminescence measurements reveals that the pressure- and rate-dependent ML behavior derives from pressure-induced strengthening of the crystal piezoelectric field and enhanced interaction between the host lattice and doped ions with a significant change of the energy level of the Mn ion. Significantly, the highly efficient ML of ZnS: Mn2+, Eu3+ at the GPa level is reproducible under a compression-decompression process and can be manipulated on a micron scale, implying great potential in mechanical-optical energy conversion and application in dynamic pressure imaging, stress sensors, and multicolor displays.

4.
J Phys Chem Lett ; 13(11): 2555-2562, 2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35285656

RESUMO

Perovskite-related materials with various dimensionalities have attracted sustained attention owing to their extraordinary electronic and optoelectronic properties, but it is still challenging in the synthesis of compounds with desired compositions and structures. Herein, a two-dimensional (2D) CsPb2I5 perovskite has been synthesized by the conversion of CsPbI3 at high-pressure and high-temperature (high P-T) conditions, which is quenchable at ambient conditions. In situ synchrotron X-ray diffraction shows that high-pressure monoclinic CsPbI3 converts into tetragonal CsPb2I5 and cubic CsI at 8.7 GPa upon heating from 644 to 666 K. Keeping the tetragonal structure stable, CsPb2I5 exhibits tunable optical properties with the bandgap changing from ∼2.4 eV at ambient pressure to ∼1.4 eV at 36.9 GPa. Further experiments demonstrate similar structural evolution in the typical three-dimensional CsPbBr3 perovskite into 2D CsPb2Br5 at high P-T conditions, indicating that the conversion of CsPbX3 (X = Br and I) into CsPb2X5 is ubiquitous.

5.
J Phys Chem Lett ; 12(33): 8024-8038, 2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34402625

RESUMO

The study of nonequilibrium transition dynamics on structural transformation from the second to microsecond regime, a time scale between static and shock compression, is an emerging field of high-pressure research. There are ample opportunities to uncover novel physical phenomena within this time regime. Herein, we briefly review the development and application of a dynamic compression technique based on a diamond anvil cell (DAC) and time-resolved X-ray diffraction (TRXRD) for the study of time-, pressure-, and temperature-dependent structural dynamics. Applications of the techniques are illustrated with our recent investigations on the mechanisms of the interconversions between different high-pressure ice polymorphs. These examples demonstrate that a combination of dynamic compression and TRXRD is a versatile approach capable of providing information on the kinetics and thermodynamic nature associated with structural transformations. Future improvement of rapid compression and TRXRD techniques and potentially interesting research topics in this area are suggested.

6.
Phys Rev Lett ; 125(15): 155702, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095607

RESUMO

High-pressure metallic ß-Sn silicon (Si-II), depending on temperature, decompression rate, stress, etc., may transform to diverse metastable forms with promising semiconducting properties under decompression. However, the underlying mechanisms governing the different transformation paths are not well understood. Here, two distinctive pathways, viz., a thermally activated crystal-crystal transition and a mechanically driven amorphization, were characterized under rapid decompression of Si-II at various temperatures using in situ time-resolved x-ray diffraction. Under slow decompression, Si-II transforms to a crystalline bc8/r8 phase in the pressure range of 4.3-9.2 GPa through a thermally activated process where the overdepressurization and the onset transition strain are strongly dependent on decompression rate and temperature. In comparison, Si-II collapses structurally to an amorphous form at around 4.3 GPa when the volume expansion approaches a critical strain via rapid decompression beyond a threshold rate. The occurrence of the critical strain indicates a limit of the structural metastability of Si-II, which separates the thermally activated and mechanically driven transition processes. The results show the coupled effect of decompression rate, activation barrier, and thermal energy on the adopted transformation paths, providing atomistic insight into the competition between equilibrium and nonequilibrium pathways and the resulting metastable phases.

7.
Proc Natl Acad Sci U S A ; 117(27): 15437-15442, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571925

RESUMO

Ice amorphization, low- to high-density amorphous (LDA-HDA) transition, as well as (re)crystallization in ice, under compression have been studied extensively due to their fundamental importance in materials science and polyamorphism. However, the nature of the multiple-step "reverse" transformation from metastable high-pressure ice to the stable crystalline form under reduced pressure is not well understood. Here, we characterize the rate and temperature dependence of the structural evolution from ice VII to ice I recovered at low pressure (∼5 mTorr) using in situ time-resolved X-ray diffraction. Unlike previously reported ice VII (or ice VIII)→LDA→ice I transitions, we reveal three temperature-dependent successive transformations: conversion of ice VII into HDA, followed by HDA-to-LDA transition, and then crystallization of LDA into ice I. Significantly, the temperature-dependent characteristic times indicate distinctive thermal activation mechanisms above and below 110-115 K for both ice VIII-to-HDA and HDA-to-LDA transitions. Large-scale molecular-dynamics calculations show that the structural evolution from HDA to LDA is continuous and involves substantial movements of the water molecules at the nanoscale. The results provide a perspective on the interrelationship of polyamorphism and unravel its underpinning complexities in shaping ice-transition kinetic pathways.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33134793

RESUMO

Responding to the rapidly increasing demand for efficient energy usage and increased speed and functionality of electronic and spintronic devices, multiferroic oxides have recently emerged as key materials capable of tackling this multifaceted challenge. In this paper, we describe the development of single-site manganese-based multiferroic perovskite materials with modest amounts of nonmagnetic Ti substituted at the magnetic Mn site in Sr1- x Ba x Mn1- y Ti y O3 (SBMTO). Significantly enhanced properties were achieved with ferroelectric-type structural transition temperatures boosted to ∼430K. Ferroelectric distortions with large spontaneous polarization values of ∼30µC/cm2, derived from a point charge model, are similar in magnitude to those of the prototypical nonmagnetic BaTiO3. Temperature dependence of the system's properties was investigated by synchrotron x-ray powder diffraction and neutron powder diffraction at ambient and high pressures. Various relationships were determined between the structural and magnetic properties, Ba and Ti contents, and T N and T C. Most importantly, our results demonstrate the large coupling between the magnetic and ferroelectric order parameters and the wide tunability of this coupling by slight variations of the material's stoichiometry.

9.
Phys Rev Lett ; 121(22): 225703, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30547611

RESUMO

Pressure-induced formation of amorphous ices and the low-density amorphous (LDA) to high-density amorphous (HDA) transition have been believed to occur kinetically below a crossover temperature (T_{c}) above which thermodynamically driven crystalline-crystalline (e.g., ice I_{h}-to-II) transitions and crystallization of HDA and LDA are dominant. Here we show compression-rate-dependent formation of a high-density noncrystalline (HDN) phase transformed from ice I_{c} above T_{c}, bypassing crystalline-crystalline transitions under rapid compression. Rapid decompression above T_{c} transforms HDN to a low-density noncrystalline (LDN) phase which crystallizes spontaneously into ice I_{c}, whereas slow decompression of HDN leads to direct crystallization. The results indicate the formation of HDA and the HDN-to-LDN transition above T_{c} are results of competition between (de)compression rate, energy barrier, and temperature. The crossover temperature is shown to have an exponential relationship with the threshold compression rate. The present results provide important insight into the dynamic property of the phase transitions in addition to the static study.

10.
Proc Natl Acad Sci U S A ; 115(9): 2010-2015, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440411

RESUMO

Water is an extraordinary liquid, having a number of anomalous properties which become strongly enhanced in the supercooled region. Due to rapid crystallization of supercooled water, there exists a region that has been experimentally inaccessible for studying deeply supercooled bulk water. Using a rapid decompression technique integrated with in situ X-ray diffraction, we show that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165 K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. Together with the change in crystallization rate with temperature, the experimental evidence indicates that the LDN is a low-density liquid (LDL). The measured X-ray diffraction data show that the LDL is tetrahedrally coordinated with the tetrahedral network fully developed and clearly linked to low-density amorphous ices. On the other hand, there is a distinct difference in structure between the LDL and supercooled water or liquid water in terms of the tetrahedral order parameter.

11.
Phys Rev Lett ; 120(3): 037002, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400497

RESUMO

As a follow-up of our previous work on pressure-induced metallization of the 2H_{c}-MoS_{2} [Chi et al., Phys. Rev. Lett. 113, 036802 (2014)PRLTAO0031-900710.1103/PhysRevLett.113.036802], here we extend pressure beyond the megabar range to seek after superconductivity via electrical transport measurements. We found that superconductivity emerges in the 2H_{a}-MoS_{2} with an onset critical temperature T_{c} of ca. 3 K at ca. 90 GPa. Upon further increasing the pressure, T_{c} is rapidly enhanced beyond 10 K and stabilized at ca. 12 K over a wide pressure range up to 220 GPa. Synchrotron x-ray diffraction measurements evidenced no further structural phase transition, decomposition, and amorphization up to 155 GPa, implying an intrinsic superconductivity in the 2H_{a}-MoS_{2}. DFT calculations suggest that the emergence of pressure-induced superconductivity is intimately linked to the emergence of a new flat Fermi pocket in the electronic structure. Our finding represents an alternative strategy for achieving superconductivity in 2H-MoS_{2} in addition to chemical intercalation and electrostatic gating.

12.
Nat Commun ; 8: 14260, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112152

RESUMO

A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

13.
Phys Rev Lett ; 119(13): 135701, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341714

RESUMO

We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1 Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

14.
Sci Rep ; 6: 24958, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27173609

RESUMO

Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strength decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. These findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.

16.
Rev Sci Instrum ; 86(7): 072205, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233345

RESUMO

The monochromator and focusing mirrors of the 16-BM-D beamline, which is dedicated to high-pressure research with micro-X-ray diffraction (micro-XRD) and X-ray absorption near edge structure (XANES) (6-45 keV) spectroscopy, have been recently upgraded. Monochromatic X-rays are selected by a Si (111) double-crystal monochromator operated in an artificial channel-cut mode and focused to 5 µm × 5 µm (FWHM) by table-top Kirkpatrick-Baez type mirrors located near the sample stage. The typical X-ray flux is ∼5 × 10(8) photons/s at 30 keV. The instrumental resolution, Δq/qmax, reaches to 2 × 10(-3) and is tunable through adjustments of the detector distance and X-ray energy. The setup is stable and reproducible, which allows versatile application to various types of experiments including resistive heating and cryogenic cooling as well as ambient temperature compression. Transmission XANES is readily combined with micro-XRD utilizing the fixed-exit feature of the monochromator, which allows combined XRD-XANES measurements at a given sample condition.

17.
Rev Sci Instrum ; 86(7): 072208, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233348

RESUMO

Complementary advances in high pressure research apparatus and techniques make it possible to carry out time-resolved high pressure research using what would customarily be considered static high pressure apparatus. This work specifically explores time-resolved high pressure x-ray diffraction with rapid compression and/or decompression of a sample in a diamond anvil cell. Key aspects of the synchrotron beamline and ancillary equipment are presented, including source considerations, rapid (de)compression apparatus, high frequency imaging detectors, and software suitable for processing large volumes of data. A number of examples are presented, including fast equation of state measurements, compression rate dependent synthesis of metastable states in silicon and germanium, and ultrahigh compression rates using a piezoelectric driven diamond anvil cell.

18.
Rev Sci Instrum ; 86(7): 072209, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26233349

RESUMO

The ability to remotely control pressure in diamond anvil cells (DACs) in accurate and consistent manner at room temperature, as well as at cryogenic and elevated temperatures, is crucial for effective and reliable operation of a high-pressure synchrotron facility such as High Pressure Collaborative Access Team (HPCAT). Over the last several years, a considerable effort has been made to develop instrumentation for remote and automated pressure control in DACs during synchrotron experiments. We have designed and implemented an array of modular pneumatic (double-diaphragm), mechanical (gearboxes), and piezoelectric devices and their combinations for controlling pressure and compression/decompression rate at various temperature conditions from 4 K in cryostats to several thousand Kelvin in laser-heated DACs. Because HPCAT is a user facility and diamond cells for user experiments are typically provided by users, our development effort has been focused on creating different loading mechanisms and frames for a variety of existing and commonly used diamond cells rather than designing specialized or dedicated diamond cells with various drives. In this paper, we review the available instrumentation for remote static and dynamic pressure control in DACs and show some examples of their applications to high pressure research.

19.
Inorg Chem ; 52(1): 431-4, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23240758

RESUMO

The structural phase transition of gadolinium-scandium-gallium garnet (Gd(3)Sc(2)Ga(3)O(12), GSGG) has been studied at high pressure and high temperature using the synchrotron X-ray diffraction technique in a laser-heated diamond anvil cell. The GSGG garnet transformed to an orthorhombic perovskite structure at approximately 24 GPa after laser heating to 1500-2000 K. The garnet-to-perovskite phase transition is associated with an ∼8% volume reduction and an increase in the coordination number of the Ga(3+) or Sc(3+) ion. The orthorhombic perovskite GSGG has bulk modulus B(0) = 194(15) GPa with B(0)' = 5.3(8), exhibiting slightly less compression than the cubic garnet structure of GSGG with B(0) = 157(15) GPa and B(0)' = 6.5(10). Upon compression at room temperature, the cubic GSGG garnet became amorphous at ∼65 GPa. Coupled with the amorphous-to-perovskite phase transition in Y(3)Fe(5)O(12) and Gd(3)Ga(5)O(12) at high-pressure-temperature conditions, we conclude that amorphization should represent a new thermodynamic state resulting from hindrance of the garnet-to-perovskite phase transition, whereas the garnet-to-amorphous transition in rare-earth garnets should be kinetically hindered at room temperature.

20.
J Phys Condens Matter ; 24(11): 115402, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22353622

RESUMO

Structural stability of the perovskite-type GdMnO(3) has been investigated by the synchrotron angle-dispersive x-ray diffraction technique up to 63 GPa in a diamond anvil cell. GdMnO(3) stays in an orthorhombic structure but undergoes an isostructural phase transition with ~5% volume reduction at 50 GPa. In the parent orthorhombic phase, the compressions along a, b and c axes exhibit a large anisotropic behavior. With increasing pressure, our results show that the distortion and tilts of the MnO(6) octahedra are reduced continuously and the orthorhombic structure evolves towards higher symmetry. By fitting the observed pressure-volume data using the third-order Birch-Murnaghan equation of state, we obtain the bulk modulus B(0) = 156(3) GPa with B(0)' = 6.5(3) for the starting orthorhombic phase. Upon decompression, the starting orthorhombic phase is recovered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...