Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 130(48): 16417-23, 2008 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-18998692

RESUMO

Treatment of 2,4-dien-1-als with allylsilanes and PPh(3)AuSbF(6) (3 mol %) led to formation of 1,4-bis(allyl)cyclopentenyl products; this gold catalyst is superior to commonly used Lewis acids according to catalyst screening. Such gold-catalyzed deoxygenative cyclizations are compatible with various oxygen-, amine-, sulfur-, hydrogen-, and carbon-based nucleophiles. The value of this new catalysis is demonstrated by the diverse annulations of 2,4-dien-1-als with electron-rich alkenes and arenes, providing an easy access to complicated cyclopentenyl frameworks. Structural analysis of annulation products reveals evidence for the participation of Nazarov cyclization. This deoxygenative cyclization is extensible to a tandem intramolecular cyclization/nucleophilic addition cascade, giving polycyclic carbo- or oxacyclic compounds with controlled stereochemistry. This new gold catalysis is applied to a short synthesis of natural compounds of the brazilane family, including brazilane, O-trimethyl-, and O-tetramethyl brazilane.

3.
J Am Chem Soc ; 128(30): 9661-7, 2006 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-16866518

RESUMO

This work investigates the feasibility of thermal and catalytic cyclization of 6,6-disubstituted 3,5-dien-1-ynes via a 1,7-hydrogen shift. Our strategy began with an understanding of a structural correlation of 3,5-dien-1-ynes with their thermal cyclization efficiency. Thermal cyclization proceeded only with 3,5-dien-1-ynes bearing an electron-withdrawing C(1)-phenyl or C(6)-carbonyl substituent, but the efficiencies were generally low (20-40% yields). On the basis of this structure-activity relationship, we conclude that such a [1,7]-hydrogen shift is characterized by a "protonic" hydrogen shift, which should be catalyzed by pi-alkyne activators. We prepared various 6,6-disubstituted 3,5-dien-1-ynes bearing either a phenyl or a carbonyl group, and we found their thermal cyclizations to be greatly enhanced by RuCl(3), PtCl(2), and TpRuPPh(3)(CH(3)CN)(2)PF(6) catalysts to confirm our hypothesis: the C(7)-H acidity of 3,5-dien-1-ynes is crucial for thermal cyclization. To achieve the atom economy, we have developed a tandem aldol condensation-dehydration and aromatization catalysis between cycloalkanones and special 3-en-1-yn-5-als using the weakly acidic catalyst CpRu(PPh(3))(2)Cl, which provided complex 1-indanones and alpha-tetralones with yields exceeding 65% in most cases. The deuterium-labeling experiments reveal two operable pathways for the metal-catalyzed [1,7]-hydrogen shift of 3,5-dien-1-ynes. Formation of alpha-tetralones d(4)-56 arises from a concerted [1,7]-hydrogen shift, whereas benzene derivative d(4)-9 proceeds through a proton dissociation and reprotonation process.

4.
Org Lett ; 8(14): 3153-6, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16805575

RESUMO

[reaction: see text] PtCl(2) (5 mol %) catalyst effected cycloisomerization of cis-2,4-dien-1-al (1) to 3-cyclopentenone (3) efficiently in hot toluene. In the presence of p-TSA, this PtCl(2) catalysis gave 2-cyclopentenone (5) exclusively because of the secondary isomerization reaction. Although the 1-2 equilibrium state greatly favors aldehyde (1), PdCl(2)(PhCN)(2) (5 mol %) catalyzed cycloisomerization of aldehyde (1) to 4,6,7,8-tetrahydro-3H-isochromene (4) smoothly in hot toluene. A plausible mechanism is proposed on the basis of reaction observation and isotope-labeled experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...