Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(20): 5381-5384, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36240368

RESUMO

Mid-infrared (Mid-IR) (2-20 µm) silicon photonics has attracted much attention in the past few years due to its application potential in free-space optical communications, light detection and ranging, and molecular analysis. The grating coupler technology is one of the most widely employed approaches for light coupling between optical fibers and waveguides. In the mid-IR spectral region, due to the lack of reliable chalcogenide-fiber or ZBLAN-fiber polarization controllers, grating couplers usually suffer from huge insertion losses induced by the arbitrary polarization states of light coupled out of mid-IR fibers. As a result, it is significant to explore polarization-insensitive grating coupling techniques in mid-IR wavelengths. However, the study is currently still in its infancy. Here, we demonstrate an ultra-thin mid-IR polarization-insensitive grating coupler. The grating coupler has a maximum coupling efficiency of -11.5 dB at a center wavelength of ∼2200 nm with a 1-dB bandwidth of ∼148 nm. Compared with conventional subwavelength grating couplers, the polarization-dependent loss was improved from 9.6 dB to 2.1 dB. Moreover, we demonstrated a polarization-insensitive grating coupler at 2700-nm wavelength with a maximum coupling efficiency of -12.0 dB. Our results pave the way for the development of mid-IR photonic integrated circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...