Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 630(Pt A): 795-803, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36279838

RESUMO

Ion-selective membrane is the key component for osmotic energy conversion. Nanofluid channels based on two-dimensional materials have advantages of facile preparation, tunable channel size, and easy upscaling, which is promising for efficient osmotic energy harvesting. However, further improvement of the output power is hindered by the low ion sensitivity for the limited charge density. Herein, we demonstrate the preparation of a cation-selective polydopamine-coated graphene oxide composite membrane with the sandwich structure by a simple interfacial polymerization technique, which greatly improves the surface charge density and further generates a power density of 3.4 W/m2 under river water and seawater. The GO membrane is firstly fabricated to function as the supporting layer and provide the reaction sites. And the ultrathin selective layer of the polydopamine membrane is chemically bonded with the GO layer by the in-situ polymerization on both sides of the GO membrane. The sandwiched nanofluidic membrane with ultrahigh charge density exhibits both high cation selectivity and ionic conductivity, benefiting the performance of osmotic energy conversion. The economic, easy-prepared method of the sandwiched nanofluidic membrane provides a promising strategy for high-performance osmotic energy conversion.


Assuntos
Grafite , Polímeros , Osmose , Polímeros/química , Grafite/química , Íons/química
2.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365562

RESUMO

With the speedy progress in the research of nanomaterials, self-assembly technology has captured the high-profile interest of researchers because of its simplicity and ease of spontaneous formation of a stable ordered aggregation system. The self-assembly of block copolymers can be precisely regulated at the nanoscale to overcome the physical limits of conventional processing techniques. This bottom-up assembly strategy is simple, easy to control, and associated with high density and high order, which is of great significance for mass transportation through membrane materials. In this review, to investigate the regulation of block copolymer self-assembly structures, we systematically explored the factors that affect the self-assembly nanostructure. After discussing the formation of nanostructures of diverse block copolymers, this review highlights block copolymer-based mass transport membranes, which play the role of "energy enhancers" in concentration cells, fuel cells, and rechargeable batteries. We firmly believe that the introduction of block copolymers can facilitate the novel energy conversion to an entirely new plateau, and the research can inform a new generation of block copolymers for more promotion and improvement in new energy applications.

3.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36235985

RESUMO

Hydrogel is a type of crosslinked three-dimensional polymer network structure gel. It can swell and hold a large amount of water but does not dissolve. It is an excellent membrane material for ion transportation. As transport channels, the chemical structure of hydrogel can be regulated by molecular design, and its three-dimensional structure can be controlled according to the degree of crosslinking. In this review, our prime focus has been on ion transport-related applications based on hydrogel materials. We have briefly elaborated the origin and source of hydrogel materials and summarized the crosslinking mechanisms involved in matrix network construction and the different spatial network structures. Hydrogel structure and the remarkable performance features such as microporosity, ion carrying capability, water holding capacity, and responsiveness to stimuli such as pH, light, temperature, electricity, and magnetic field are discussed. Moreover, emphasis has been made on the application of hydrogels in water purification, energy storage, sensing, and salinity gradient energy conversion. Finally, the prospects and challenges related to hydrogel fabrication and applications are summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...