Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37447702

RESUMO

This paper proposes a common-mode noise suppression filter scheme for use in the servers and computer systems of high-speed buses such as SATA Express, HDMI 2.0, USB 3.2, and PCI Express 5.0. The filter uses a novel series-mushroom-defected corrugated reference plane (SMDCRP) structure. The measured results are similar to the full-wave simulation results. In the frequency domain, the measured insertion loss of the SMDCRP structure filter in differential mode (DM) can be kept below -4.838 dB from DC to 32 GHz and can maintain signal integrity characteristics. The common-mode (CM) suppression performance can suppress more than -10 dB from 8.81 GHz to 32.65 GHz. Fractional bandwidth can be increased to 115%, and CM noise can be ameliorated by 55.2%. In the time domain, using eye diagram verification, the filter shows complete differential signal transmission capability and supports a transmission rate of 32 Gb/s for high-speed buses. The SMDCRP structure filter reduces the electromagnetic interference (EMI) problem and meets the quality requirements for the controllers and sensors used in the server and computer systems of high-speed buses.


Assuntos
Agaricales , Intervenção Coronária Percutânea , Simulação por Computador , Sistemas Computacionais
2.
Sensors (Basel) ; 23(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36679754

RESUMO

In the PCB process, overcoming common-mode noise radiation is critical. In past years, most studies have focused on a common-mode noise filter (CMNF) that can solve electromagnetic interference in high-speed digital systems by blocking and absorbing common-mode noise radiation. Unfortunately, connecting with any reflective common-mode noise filter (R-CMNF) and reducing the area of an absorptive common-mode noise filter (A-CMNF) are the most troublesome tasks in the PCB process. A novel equivalent circuit is proposed in this research to minimize the complexity of the design and improve accuracy. Detailed analyses of this proposed approach are entirely depicted in this article. The experiment result shows that 9% of fractional bandwidth centered at 2.25 Hz can achieve at least 90% absorption efficiency. With our proposed method, the area of A-CMNF is smaller than in state-of-the-art research.


Assuntos
Ruído
3.
IEEE Trans Biomed Circuits Syst ; 16(4): 664-678, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853073

RESUMO

A respiratory disorder that attacks COVID-19 patients requires intensive supervision of medical practitioners during the isolation period. A non-contact monitoring device will be a suitable solution for reducing the spread risk of the virus while monitoring the COVID-19 patient. This study uses Frequency-Modulated Continuous Wave (FMCW) radar and Machine Learning (ML) to obtain respiratory information and analyze respiratory signals, respectively. Multiple subjects in a room can be detected simultaneously by calculating the Angle of Arrival (AoA) of the received signal and utilizing the Multiple Input Multiple Output (MIMO) of FMCW radar. Fast Fourier Transform (FFT) and some signal processing are implemented to obtain a breathing waveform. ML helps the system to analyze the respiratory signals automatically. This paper also compares the performance of several ML algorithms such as Multinomial Logistic Regression (MLR), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boosting (XGB), Light Gradient Boosting Machine (LGBM), CatBoosting (CB) Classifier, Multilayer Perceptron (MLP), and three proposed stacked ensemble models, namely Stacked Ensemble Classifier (SEC), Boosting Tree-based Stacked Classifier (BTSC), and Neural Stacked Ensemble Model (NSEM) to obtain the best ML model. The results show that the NSEM algorithm achieves the best performance with 97.1% accuracy. In the real-time implementation, the system could simultaneously detect several objects with different breathing characteristics and classify the respiratory signals into five different classes.


Assuntos
COVID-19 , Radar , Algoritmos , Humanos , Aprendizado de Máquina , Respiração , Processamento de Sinais Assistido por Computador
4.
Sensors (Basel) ; 21(9)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063576

RESUMO

During the pandemic of coronavirus disease-2019 (COVID-19), medical practitioners need non-contact devices to reduce the risk of spreading the virus. People with COVID-19 usually experience fever and have difficulty breathing. Unsupervised care to patients with respiratory problems will be the main reason for the rising death rate. Periodic linearly increasing frequency chirp, known as frequency-modulated continuous wave (FMCW), is one of the radar technologies with a low-power operation and high-resolution detection which can detect any tiny movement. In this study, we use FMCW to develop a non-contact medical device that monitors and classifies the breathing pattern in real time. Patients with a breathing disorder have an unusual breathing characteristic that cannot be represented using the breathing rate. Thus, we created an Xtreme Gradient Boosting (XGBoost) classification model and adopted Mel-frequency cepstral coefficient (MFCC) feature extraction to classify the breathing pattern behavior. XGBoost is an ensemble machine-learning technique with a fast execution time and good scalability for predictions. In this study, MFCC feature extraction assists machine learning in extracting the features of the breathing signal. Based on the results, the system obtained an acceptable accuracy. Thus, our proposed system could potentially be used to detect and monitor the presence of respiratory problems in patients with COVID-19, asthma, etc.


Assuntos
COVID-19 , Processamento de Sinais Assistido por Computador , Algoritmos , Humanos , Respiração , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...