Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(2): 501-506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523108

RESUMO

To explore the mixing effect of litter decomposition and the role of detritivores, we conducted a laboratory-based microcosm experiment to study the influence of detritivores on litter mixture decomposition by using two litter species with contrasting quality, i.e., Cinnamomum camphora and Michelia × alba, and a detritivore (isopoda). After 100 days incubation, the decomposition rate of litter mixture was 52.1%, slower than that of M. alba (62.6%) and significantly faster than that of C. camphora (33.6%). The addition of isopods significantly increased litter decomposition rate, with C. camphora, M. alba, and the mixture increased by 14.4%, 20.1% and 22.1%, respectively. There was no significant mixing effect without isopods. Adding isopods significantly promoted the mixing effect of litter decomposition, with a value of the litter mixture decomposition effect of 8.6%. The detritivores increased litter decomposition rate and mixing effect through increasing consumption of litter with better quality.


Assuntos
Cinnamomum camphora , Ecossistema , Folhas de Planta
2.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2397-2404, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36131655

RESUMO

Soil fungi are important components of belowground biodiversity and play important roles in soil carbon and nutrient cycling. We investigated fungal communities in the top soil (0-10 cm) of 22 Pinus massoniana forests in the Three Gorges Reservoir Region using high-throughput sequencing technique. We found that Ascomycota and Basidiomycota were the dominant fungi phyla, and Eurotiales, Russulales, and Tremellales were the most abundant fungi orders. The dominant functional groups in P. massoniana forests were saprophytic fungi, ectomycorrhizal fungi, and ericoid mycorrhizal fungi. Results of redundancy analysis showed that environmental variables but not spatial variables were the main drivers of soil fungal community structure across the 22 P. massoniana forests, which suggested that habitat filtering rather than dispersal limitation shaped soil fungal community structure. Aboveground biomass, soil conductivity, available phosphorus, soil bulk density, carbon to nitrogen ratio, nitrate concentration, and proportion of slit were the main factors explaining the variation in soil fungal community structure. It should be noted that the key factors influencing different fungal functional groups differed across forests.


Assuntos
Basidiomycota , Micobioma , Micorrizas , Pinus , Carbono , Florestas , Fungos , Nitratos , Nitrogênio , Fósforo , Solo/química , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...