Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1089067, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937532

RESUMO

Aims: Depression in bipolar disorder (BD) is often misdiagnosed as unipolar depression (UD), leading to mistreatments and poor clinical outcomes in many bipolar patients. Herein, we report direct comparisons between medication-free patients with BD and those with UD in terms of the microstructure and neurometabolites in eight brain regions. Methods: A total of 20 patients with BD, 30 with UD patients, and 20 matched healthy controls (HCs) underwent 3.0T magnetic resonance imaging with chemical exchange saturation transfer (CEST) for glutamate (Glu; GluCEST) imaging, multivoxel magnetic resonance spectroscopy, and diffusion kurtosis imaging. Results: Compared with HCs, patients with UD showed significantly lower levels of multiple metabolites, GluCEST% values, and diffusional kurtosis [mean kurtosis (MK)] values in most brain regions. In contrast, patients with BD presented significantly higher levels of Glu in their bilateral ventral prefrontal white matter (VPFWM), higher choline (Cho)-containing compounds in their left VPFWM and anterior cingulate cortex (ACC), and higher GluCEST% values in their bilateral VPFWM and ACC; moreover, reduced MK in these patients was more prominent in the left VPFWM and left thalamus. Conclusion: The findings demonstrated that both patients with UD and BD have abnormal microstructure and metabolic alterations, and the changes are not completely consistent in the prefrontal lobe region. Elevated Glu, Cho, and GluCEST% in the ACC and VPFWM of patients with UD and BD may help in differentiating between these two disorders. Our findings support the significance for the microstructural integrity and brain metabolic changes of the prefrontal lobe region in BD and UD.

2.
Oncotarget ; 8(28): 45759-45767, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28501855

RESUMO

Extracellular pH (pHe) decrease is associated with tumor growth, invasion, metastasis, and chemoresistance, which can be detected by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI). Here, we demonstrated that ioversol CEST MRI can be exploited to achieve pHe mapping of the liver cancer microenvironment. In in vitro studies, we firstly explored whether ioversol signal is pH-dependent, and calculated the function equation between the CEST effects of ioversol and pH values, in the range of 6.0 to 7.8, by a ratiometric method. Then we verified the feasibility of this technique and the equation in vivo by applying pHe imaging in an MMTV-Erbb2 transgenic mouse breast cancer model, which is often used in CEST pHe studies. Furthermore, in vivo ioversol CEST MRI, we were able to map relative pHe and differentiate between tumor and normal tissue in a McA-RH7777 rat hepatoma model. This suggests pHe may be a useful biomarker for human liver cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Imageamento por Ressonância Magnética/métodos , Animais , Biomarcadores , Linhagem Celular Tumoral , Meios de Contraste , Modelos Animais de Doenças , Espaço Extracelular , Feminino , Camundongos , Camundongos Transgênicos , Imagens de Fantasmas , Ratos , Ácidos Tri-Iodobenzoicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...