Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 42(1): 117, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37161591

RESUMO

BACKGROUND: There are few effective medications for treating colorectal cancer and liver metastases (CRLM). The interactions among glycolysis, epithelial-mesenchymal transition (EMT), and immune microenvironment contribute to the progression of CRLM. A main glycolytic enzyme pyruvate Kinase M2 (PKM2) is highly expressed in colorectal cancer and CRLM, and thus can be a potential therapeutic target. METHODS: A therapeutic strategy was proposed and the shikonin-loaded and hyaluronic acid-modified MPDA nanoparticles (SHK@HA-MPDA) were designed for CRLM therapy via PKM2 inhibition for immunometabolic reprogramming. The treatment efficacy was evaluated in various murine models with liver metastasis of colorectal tumor. RESULTS: SHK@HA-MPDA achieved tumor-targeted delivery via hyaluronic acid-mediated binding with the tumor-associated CD44, and efficiently arrested colorectal tumor growth. The inhibition of PKM2 by SHK@HA-MPDA led to the remodeling of the tumor immune microenvironment and reversing EMT by lactate abatement and the suppression of TGFß signaling; the amount of cytotoxic effector CD8+ T cells was increased while the immunosuppressive MDSCs decreased. CONCLUSION: The work provided a promising targeted delivery strategy for CRLM treatment by regulating glycolysis, EMT, and anticancer immunity. An immunometabolic strategy for treating colorectal cancer liver metastases using the shikonin-loaded, hyaluronic acid-modified mesoporous polydopamine nanoparticles (SHK@HA-MPDA) via glycolysis inhibition, anticancer immunity activation, and EMT reversal. SHK@HA-MPDA can inhibit cytoplasmic PKM2 and glycolysis of the tumor and reduce lactate flux, and then activate the DCs and remodel the tumor immune microenvironment. The reduced lactate flux can reduce MDSC migration and suppress EMT.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Ácido Láctico , Linfócitos T CD8-Positivos , Transição Epitelial-Mesenquimal , Ácido Hialurônico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
2.
Mol Med ; 29(1): 55, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085770

RESUMO

BACKGROUNDS: Renal fibrosis is a common pathologic process of most chronic kidney diseases (CKDs), becoming one of the major public health problems worldwide. Terminal fucosylation plays an important role in physiological homeostasis and pathological development. The present study aimed to explore the role of terminal fucosylation during kidney fibrogenesis and propose a possible anti-fibrosis treatment via suppressing aberrant terminal fucosylation. METHODS: We investigated the expression level of fucosyltransferase1 (FUT1) in CKD patients by using public database. Then, we further confirmed the level of terminal fucosylation by UEA-I staining and FUT1 expression in unilateral ureteral obstruction (UUO)-induced renal fibrosis mice. Immunostaining, qPCR, western blotting and wound healing assay were applied to reveal the effect of FUT1 overexpression in human kidney proximal tubular epithelial cell (HK-2). What's more, we applied terminal fucosylation inhibitor, 2-Deoxy-D-galactose (2-D-gal), to determine whether suppressing terminal fucosylation ameliorates renal fibrosis progression in vitro and in vivo. RESULTS: Here, we found that the expression of FUT1 significantly increased during renal fibrosis. In vitro experiments showed upregulation of epithelial-mesenchymal transition (EMT) after over-expression of FUT1 in HK-2. Furthermore, in vivo and in vitro experiments indicated that suppression of terminal fucosylation, especially on TGF-ßR I and II, could alleviate fibrogenesis via inhibiting transforming growth factor-ß (TGF-ß)/Smad signaling. CONCLUSIONS: The development of kidney fibrosis is attributed to FUT1-mediated terminal fucosylation, shedding light on the inhibition of terminal fucosylation as a potential therapeutic treatment against renal fibrosis.


Assuntos
Fucosiltransferases , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Transição Epitelial-Mesenquimal , Fibrose/metabolismo , Fibrose/patologia , Fucosiltransferases/metabolismo , Rim/metabolismo , Rim/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Galactosídeo 2-alfa-L-Fucosiltransferase
3.
Transplantation ; 107(6): 1291-1301, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36367925

RESUMO

BACKGROUND: Organ allograft rejection is mainly driven by T-cell response. Studies have shown that fucosylation plays essential roles in the immune cell development and function. Terminal fucosylation inhibitor, 2-deoxy-D-galactose (2-D-gal), has been reported to suppress immunoresponse of macrophages, but its effects on T-cell-mediated immune response and transplant rejection have not been fully explored. METHODS: The terminal fucosylation level in T cells was detected through ulex europaeus agglutinin-I staining. The consequences of 2-D-gal on murine T-cell proliferation, activation, cytokine secretion, and cell cycle were investigated in vitro. T-cell receptor signaling cascades were examined. Last, mouse skin transplant model was utilized to evaluate the regulatory effects of 2-D-gal on T-cell response in vivo. RESULTS: The expression of fucosyltransferase1 was upregulated in CD3/CD28-activated T cells along with an elevation of α(1,2)-fucosylation level as seen by ulex europaeus agglutinin-I staining. Furthermore, 2-D-gal suppressed T-cell activation and proliferation, decrease cytokines production, arrest cell cycle, and prevent the activation of T-cell receptor signaling cascades. In vivo experiments showed that 2-D-gal limited T-cell proliferation to prolong skin allograft in mice. This was accompanied by lower level of inflammatory cytokines, and were comparable to those treated with Cyclosporin A. CONCLUSIONS: Terminal fucosylation appears to play a role in T-cell activation and proliferation, and its inhibitor, 2-D-gal, can suppress T-cell activation and proliferation both in vitro and in vivo. In a therapeutic context, inhibiting terminal fucosylation may be a potential strategy to prevent allogeneic transplant rejection.


Assuntos
Transplante de Pele , Linfócitos T , Camundongos , Animais , Linfócitos T/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Aglutininas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...