Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Opt Express ; 32(12): 21281-21292, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859486

RESUMO

For weak coherent single-photon secure data communication among short-reach metropolitan intra-/inter-city networks at the O-band (1250-1350 nm), the commercially available semiconductor laser sources are emerging but still suffering from high single-mode-fiber (SMF) loss, broad linewidth, and unstable wavelength. To overcome such disadvantages for enabling the efficient phase-coding link with sufficient secure key rate, a specifically designed adiabatic package with active temperature-/current-feedback control is proposed for the paired O-band MHz-linewidth master-to-slave injection-locked DFBLDs and a polarization-maintaining 1-bit-delay interferometer is stabilized with using a passively adiabatic cell to achieve accurate differential phase decoding. Even though, the phonon-induced phase fluctuation still occurs at rising and falling edges of the decoded long-pattern secure data bits delivered from the slave DFBLD, which is mainly attributed to the intra-cavity heating under excessive free-carrier generation via the master DFBLD injection. To stabilize the differential-phase-shift (DPS) keying protocol, the phase-code distortion caused by over-injection-induced Auger heating is effectively suppressed by reducing the overly biased injection with precise master-injection-level control. The rising-/falling-edge damping distortion of the phase-shift-encoded secure bit-stream envelope is suppressed by appropriately decreasing the DC bias current and adjusting the AC encoding amplitude of the master DFBLD. Such operation reduces the incorrect π phase shift in the injection-locked slave DFBLD biased at optimized below-threshold DC offset, thus allowing single-photon DPS-keying data transmission over 15-km SMF with slightly increasing the single-photon bit-error ratio from <3% (0-km) to 6.2% (15-km).

2.
Sci Rep ; 14(1): 7018, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528020

RESUMO

This study showcases a method for achieving high-performance yellow and red micro-LEDs through precise control of indium content within quantum wells. By employing a hybrid quantum well structure with our six core technologies, we can accomplish outstanding external quantum efficiency (EQE) and robust stripe bandwidth. The resulting 30 µm × 8 micro-LED arrays exhibit maximum EQE values of 11.56% and 5.47% for yellow and red variants, respectively. Notably, the yellow micro-LED arrays achieve data rates exceeding 1 Gbit/s for non-return-to-zero on-off keying (NRZ-OOK) format and 1.5 Gbit/s for orthogonal frequency-division multiplexing (OFDM) format. These findings underscore the significant potential of long-wavelength InGaN-based micro-LEDs, positioning them as highly promising candidates for both full-color microdisplays and visible light communication applications.

3.
Nanomaterials (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242115

RESUMO

Amorphous-Ge (α-Ge) or free-standing nanoparticles (NPs) synthesized via hydrogen-free plasma-enhanced chemical vapor deposition (PECVD) were applied as transmissive or reflective saturable absorbers, respectively, for starting up passively mode-locked erbium-doped fiber lasers (EDFLs). Under a threshold pumping power of 41 mW for mode-locking the EDFL, the transmissive α-Ge film could serve as a saturable absorber with a modulation depth of 52-58%, self-starting EDFL pulsation with a pulsewidth of approximately 700 fs. Under a high power of 155 mW, the pulsewidth of the EDFL mode-locked by the 15 s-grown α-Ge was suppressed to 290 fs, with a corresponding spectral linewidth of 8.95 nm due to the soliton compression induced by intra-cavity self-phase modulation. The Ge-NP-on-Au (Ge-NP/Au) films could also serve as a reflective-type saturable absorber to passively mode-lock the EDFL with a broadened pulsewidth of 3.7-3.9 ps under a high-gain operation with 250 mW pumping power. The reflection-type Ge-NP/Au film was an imperfect mode-locker, owing to their strong surface-scattered deflection in the near-infrared wavelength region. From the abovementioned results, both ultra-thin α-Ge film and free-standing Ge NP exhibit potential as transmissive and reflective saturable absorbers, respectively, for ultrafast fiber lasers.

4.
Discov Nano ; 18(1): 29, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862206

RESUMO

Though light-emitting diodes (LEDs) combined with various color conversion techniques have been widely explored for VLC (visible light communication), E-O (electro-optical) frequency responses of devices with quantum dots (QDs) embedded within the nanoholes have rarely been addressed. Here we propose LEDs with embedded photonic crystal (PhC) nanohole patterns and green light QDs for studying small-signal E-O frequency bandwidths and large signal on-off keying E-O responses. We observe that the E-O modulation quality of PhC LEDs with QDs is better than a conventional LED with QDs when the overall blue mixed with green light output signal is considered. However, the optical response of only QD converted green light shows a contradictory result. The slower E-O conversion response is attributed to multi-path green light generation from both radiative and nonradiative energy transfer processes for QDs coated on the PhC LEDs.

5.
Opt Express ; 30(10): 17130-17139, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221542

RESUMO

By collimating the single-mode (SM) vertical-cavity surface-emitting laser (VCSEL) at 850 nm with either the OM4 multi-mode fiber (OM4-MMF) or the graded-index single-mode fiber (GI-SMF) with lensed end-face, the directly encoded non-return-to-zero on-off keying (NRZ-OOK) data transmission performance is characterized when tilting the coupling angle with respect to the surface normal of the SM-VCSEL. In comparison with the lensed OM4-MMF and lensed SMF coupling, the lensed OM4-MMF collimator shows a large coupling angle tolerance with the coupling efficiency only degraded by 5% when enlarging the tilted angle from 0° to 10°. In contrast, the lensed GI-SMF collimator attenuates the coupled SM-VCSEL output by more than 50% when tilting the coupling angle up to 10°. For the lensed OM4-MMF coupling, the receivable NRZ-OOK data rate in BtB and after 100-m OM4-MMF cases can achieve 50 Gbit/s with its corresponding BER degraded from 6.5 × 10-10 to 8.8 × 10-10 when enlarging its tilting angle ranged from 0° to 10°. By changing the collimator to the lensed SMF, the decoded BER significantly degrades from 5.8 × 10-5 to 1.2 × 10-1 when coupling and transmitting the NRZ-OOK data at 50 Gbit/s. Owing to the low coupling efficiency via the lensed SMF collimator, the error-free NRZ-OOK data rate under the lensed SMF coupling somewhat decreases to 35 Gbit/s in the BtB link and to 32 Gbit/s after the 100-m GI-SMF link with allowable coupling angle tilted from 0° to 4°. This work confirms the applicability of the lensed MMF or SMF collimator for coupling the SM-VCSEL output with a relatively large tolerance on the tilting angle with respect to the surface normal of the SM-VCSEL.

6.
Nanomaterials (Basel) ; 12(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35407314

RESUMO

A low-temperature plasma-enhanced chemical vapor deposition grown germanium (Ge) thin-film is employed as a nonlinear saturable absorber (SA). This Ge SA can passively mode-lock the erbium-doped fiber laser (EDFL) for soliton generation at a central wavelength of 1600 nm. The lift-off and transfer of the Ge film synthesized upon the SiO2/Si substrate are performed by buffered oxide etching and direct imprinting. The Ge film with a thickness of 200 nm exhibits its Raman peak at 297 cm-1, which both the nanocrystalline and polycrystalline Ge phases contribute to. In addition, the Ge thin-film is somewhat oxidized but still provides two primary crystal phases at the (111) and (311) orientations with corresponding diffraction ring radii of 0.317 and 0.173 nm, respectively. The nanocrystalline structure at (111) orientation with a corresponding d-spacing of 0.319 nm is also observed. The linear and nonlinear transmittances of the Ge thin-film are measured to show its self-amplitude modulation coefficient of 0.016. This is better than nano-scale charcoal and carbon-black SA particles for initiating the mode-locking at the first stage. After the Ge-based saturable absorber into the L-band EDFL system without using any polarized components, the narrowest pulsewidth and broadest linewidth of the soliton pulse are determined as 654.4 fs and 4.2 nm, respectively, with a corresponding time-bandwidth product of 0.32 under high pumping conditions.

7.
Macromol Rapid Commun ; 43(8): e2100854, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35254691

RESUMO

Photodetectors based on reduced graphene oxide (rGO) have attracted much attention owing to their simple and low-cost fabrication process. However, the aggregation and defects of rGO flakes still limit the performance of rGO photodetectors. Controlling the composition of rGO has become a vital factor for its prospective applications. For example, the interconnection between rGO and polymers for modified morphologies of rGO films leads to an enhanced performance of devices. In this work, a practical approach to engineer surface uniformity and enhance the performance of a photodetector by modifying the rGO film with hydrophilic polymers poly(vinyl alcohol) (PVA) is reported. Compared with the rGO photodetector, the on/off ratio for the PVA/rGO photodetector shows 3.5 times improvement, and the detectivity shows 53% enhancement even when the photodetector is operated at a low bias of 0.3 V. This study provides an effective route to realize PVA/rGO photodetectors with a low-power operation which shows promising opportunities for the future development of green systems.

8.
Opt Lett ; 46(20): 5189-5192, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34653148

RESUMO

Traditional visible light communication (VLC) via light-emitting diodes (LEDs) employs the on-off keying (OOK) modulation scheme. Even though optical frequency modulation has many advantages, it is hardly used for LED VLC because a high carrier frequency cannot be applied to the LED cavity due to the resistance-capacitance limit. Here, by monolithically integrating an LED with an integrated digital transducer, we experimentally demonstrate the intermixing of gigahertz surface acoustic waves and electrical data signals in the LED cavity at room temperature. An optical transmitter was realized by in situ frequency up-conversion of the data signals from an LED, which has the advantages of improving transmission performance by up-shifting the data spectrum away from low-frequency noise. Our proposed integrated acousto-optic transducer opens a new developing scheme on the frequency up-mixed data encoding of an LED beyond its inherent modulation bandwidth for future VLC.

9.
Sci Rep ; 11(1): 7978, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846403

RESUMO

We fabricated tantalum pentoxide (Ta2O5) channel waveguides and used them to experimentally demonstrate higher-order mode supercontinuum (SC) generation. The Ta2O5 waveguide has a high nonlinear refractive index which was in an order magnitude of 10-14 cm2/W and was designed to be anomalously dispersive at the pumping wavelength. To the best of our knowledge, this is the first time a higher-order mode femtosecond pump based broadband SC has been measured from a nonlinear waveguide using the phase-matching method. This enabled us to demonstrate a SC spectrum spanning from 842 to 1462 nm (at - 30 dB), which corresponds to 0.83 octaves, when using the TM10 waveguide mode. When using the TE10 mode, the SC bandwidth is slightly reduced for the same excitation peak power. In addition, we theoretically estimated and discussed the possibility of using the broadband higher-order modes emitted from the Ta2O5 waveguide for trapping nanoparticles. Hence, we believe that demonstrated Ta2O5 waveguide are a promising broadband light source for optical applications such as frequency metrology, Raman spectroscopy, molecular spectroscopy and optical coherence tomography.

10.
Sensors (Basel) ; 20(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33137887

RESUMO

Visible light communication is an emerging high-speed optical wireless communication technology that can be a candidate to alleviate pressure on conventional radio frequency-based technology. In this paper, for the first time, the advanced modulation format of probabilistic shaping (PS) bit loading is investigated in a high data rate visible light communication system based on a 450-nm Gallium Nitride laser diode. The characteristic of the system is discussed and PS bit loading discrete multi-tone modulation helps to raise the spectral efficiency and improve the system performance. Higher entropy can be achieved in the same signal-to-noise ratio (SNR) and modulation bandwidth limitation, comparing to bit and power loading. With PS bit loading, an available information rate (AIR) of 10.23 Gbps is successfully achieved at the signal bandwidth of 1.5 GHz in a 1.2 m free space transmission with normalized generalized mutual information above 0.92. And higher AIR can be anticipated with an entropy-loading strategy that fixes the channel characteristic. Experimental results validate that a PS bit loading scheme has the potential to increase the system capacity.

11.
Materials (Basel) ; 13(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824466

RESUMO

This paper reviews the developing progress on the synthesis of the silicon quantum dots (Si-QDs) via the different methods including electrochemical porous Si, Si ion implantation, and plasma enhanced chemical vapor deposition (PECVD), and exploring their featured applications for light emitting diode (LED), color-converted phosphors, and waveguide switching devices. The characteristic parameters of Si-QD LED via different syntheses are summarized for discussion. At first, the photoluminescence spectra of Si-QD and accompanied defects are analyzed to distinguish from each other. Next, the synthesis of porous Si and the performances of porous Si LED reported from different previous works are compared in detail. Later on, the Si-QD implantation in silicide (SiX) dielectric films developed to solve the instability of porous Si and their electroluminescent performances are also summarized for realizing the effect of host matrix to increase the emission quantum efficiency. As the Si-ion implantation still generates numerous defects in host matrix owing to physical bombardment, the PECVD method has emerged as the main-stream methodology for synthesizing Si-QD in SiX semiconductor or dielectric layer. This method effectively suppresses the structural matrix imperfection so as to enhance the external quantum efficiency of the Si-QD LED. With mature synthesis technology, Si-QD has been comprehensively utilized not only for visible light emission but also for color conversion and optical switching applications in future academia and industry.

12.
Opt Lett ; 45(8): 2203-2206, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287194

RESUMO

In this Letter, we report high-speed integrated 14 µm in diameter micro-light-emitting diode (µLED) arrays with the parallel configuration, including ${2} \times {2}$2×2, ${2} \times {3}$2×3, ${2} \times {4}$2×4, and ${2} \times {5}$2×5 arrays. The small junction area of µLED (${\sim}{191}\;\unicode{x00B5}{\rm m}^2$∼191µm2) in each element facilitates the operation of higher injection current density up to ${13}\;{{\rm kA/cm}^2}$13kA/cm2, leading to the highest modulation bandwidth of 615 MHz. The optical power of ${2} \times {5}$2×5 array monotonically increases (${\sim}{10}$∼10 times higher) as the number of arrays increases (1 to 10), while retaining the fast modulation bandwidth. A clear eye diagram up to 1 Gbps without any equalizer further shows the capability of this high-speed transmitter for VLC. These results mean that tailoring the optical power of µLEDs in a parallel-biased integrated array can further enhance the data transmission rate without degradation of the modulation bandwidth.

13.
Opt Lett ; 44(5): 1158-1161, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30821737

RESUMO

To develop an indoor optical wireless communication (OWC) system, both the system complexity/cost and data rate need to be taken into consideration. In this Letter, a cost-efficient half-duplex OWC system for photonic home area network applications is proposed and experimentally demonstrated. A low-cost Fabry-Perot laser diode is proposed to be employed as both the downlink receiver (Rx) and uplink transmitter at the user side. Enabled by the Fabry-Perot transceiver, the indoor transmission of 10 Gbit/s four-level pulse-amplitude-modulation signal for both downlinks and uplinks is experimentally achieved over a 1.7 km single-mode fiber and 1.1 m free space. Moreover, the proposed scheme also enables us to operate an orthogonal frequency division multiplexing (OFDM) signal. The bit error rate levels of multi-gigabit OFDM data for both downlinks and uplinks over a 10 h measurements are all under a 7% forward error correction limit of 3.8×10-3, which indicates that the proposed system is robust and, thus, can provide a promising solution for high-speed low-cost home area OWC networks.

14.
Sci Rep ; 8(1): 14859, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291267

RESUMO

All-optical logics are realized on nanoscale SiC waveguides with add-drop micro-ring functionality, including the TE/TM polarized data decoding, the dual-port Kerr switching and gating beyond 12 Gbit/s. With employing the C-C bond enriched SiC thin film upon thermal oxide, the nonlinear refractive index of up to 2.44 × 10-12 cm2/W enables the asymmetric waveguide with polarization distinguishable transmission, which provides a polarization-selectivity to discreminate the TE/TM polarized data decoding with an nearly 9-dB extinction ratio. The TE/TM polarized decoding performance is comparable with a state-of-the-art fiberized in-line polarizer. The complementary transmission in the bus waveguide port facilitates the dual-port Kerr switching for data format conversion/inversion in both add/drop channels. Owing to the TE/TM polarization discriminated throughput, the asymmetric add-drop waveguide micro-ring also permits all-optical AND logic gating functions, where the ON-state outputs only if the pump bit is set at ON state and the probe bit with matched polarization. These results reveal the multi-functionality of the nanoscale SiC add-drop micro-ring waveguide for future photonic logics on chip.

15.
Sci Rep ; 8(1): 13711, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209333

RESUMO

With the remote beating of two mutually incoherent laser carriers, the local-oscillator-free long-reach millimeter-wave over fiber (MMWoF) link at 60-GHz band is demonstrated. The unique schemes of the proposed MMWoF are the wavelength-locked colorless laser diode (CLD) modulator, the mutually incoherent optical carrier for heterodyne MMW generation, and the square-law power envelope detection at receiving end. By directly encoding the single-mode with the CLD modulator, the single-carrier modulated QAM-OFDM data is achieved to release the RF power fading after fiber transmission. The mutually incoherent laser beating enables the optical heterodyne MMW generation with two independent optical carriers, which provides the advantages of local-oscillator-free operation and rules out the requirement of dual-mode optical carrier delivery from central office. At the wireless receiving end, the received QAM-OFDM data is self-down-converted to the baseband by employing the square-law power envelope detection. This eliminates the requirement of local oscillator and rules out the influence of the MMW carrier frequency fluctuation between two mutually incoherent lasers (used at central office and remote node), which effectively provides the MMW carrier immunity against the down-conversion instability caused by clock jitter or carrier incoherence. This architecture ensures the transmission of 16.5-Gbit/s 32-QAM OFDM data over 50 km in SMF and 3 m in free-space with the FEC certificated error vector magnitude of 12%, signal-to-noise ratio (SNR) of 18.4 dB, and bit error rate of 3.8 × 10-3. For multi-channel DWDM-PON applications, the proposed local-oscillator-free MMWoF link can successfully perform 11 DWDM channels of 32-QAM OFDM data access at 16.5 Gbit/s per channel via the wavelength controlling of the CLD modulation stage and the detuning of the beating carrier at remote node.

16.
Sci Rep ; 8(1): 13142, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177772

RESUMO

Violet laser diode (VLD) based ultrahigh-speed free-space optical (FSO) system is demonstrated for point-to-point data transmission. By directly encoding the VLD with 64-quadrature amplitude modulation discrete multi-tone (64-QAM DMT) data stream for optical wireless communication through 0.5-10 m in free space, the point-to-point VLD-based FSO link allows delivering the 64-QAM DMT data at an ultrahigh bit rate of up to 26.4 Gbps. After receiving with a high-speed p-i-n photodiode, such a VLD-FSO link can provide clear constellation plot with error vector magnitude (EVM) of 8.57%, signal-to-noise ratio (SNR) of 21.34 dB and bit error ratio (BER) of 3.17 × 10-3 under forward-error-correction criterion. The EVM increases from 8.8% to 9.4% and the SNR decreases from 21.1 to 20.6 dB to slightly degrade the reachable data rate from 25.8 to 24 Gbit/s with transmission distance lengthening from 3 to 10 m.

17.
Opt Express ; 26(18): 23397-23410, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184841

RESUMO

Enabling laser white-lighting at a correlated color temperature (CCT) of 6500K with the use of only red/green/blue (RGB) tri-color laser diodes (LDs) is demonstrated, which can further perform wavelength division multiplexing (WDM) communication with a high-spectral-usage 16 QAM-OFDM data stream at 11.2 Gbps over 0.5 m. The sampling rate of encoded data is optimized to avoid the aliasing effect and to effectively amplify the signal with high on/off extinction and modulation depth. Proper oversampling can decrease the peak-to-average power ratio (PAPR) of the OFDM data and filter out unwanted noise. There are also six different diffusers used to diverge the white-light mixed by the RGB LD beam. By analyzing the color-casting transmittance, surface roughness, CCT uniformity, divergent angle of the diffuser, and the data transmission capacity, the frosted glass (FG2.8) diffuser with high transmittance diverges the white light with the divergent angle of ± 20° and supports the highest data rate of 14 Gbps over 0.5 m. To fit the day-light CCT, the blue LD power at an optimized bias current is further attenuated with a 0.6-optical density filter for reducing CCT from 100000K to 6500K; however, such an adjustment also degrades the SNR ratio to sacrifice the achievable data rate of the blue LD. The polycarbonate (PC1.5) diffuser with proper surface roughness diverged white-light exhibits the best CCT uniformity and a divergent angle of ± 30° but supports a data rate of only 6.4 Gbps over 0.5 m. The poly (methyl methacrylate) PMMA1.5 diffuser scatters the white light with the largest angle of ± 40°; however, the data rate also decreases to 4.8 Gbps over 0.5 m.

18.
Sci Rep ; 7(1): 10478, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874787

RESUMO

Up to 18-Gbps direct encoding of blue laser diode (BLD) is demonstrated for free-space data transmission. By reshaping the orthogonal frequency multiplexed (16-QAM OFDM) stream with sidelobe filtering, the raw data rate expedites from 17.2 to 18.4 Gbps. Employing an ultrafast p-i-n photodiode with smaller active area diameter and lower noise equivalent power significantly enlarges the data rate by 1.6 Gbps or upgrades the signal-to-noise ratio (SNR) by 0.2 dB. Replacing the 80-mW BLD with the 120-mW one essentially increases the received SNR by 0.4 dB under enhanced modulation throughput. Reinforcing the beam collimation and collection by increasing the numerical aperture with a plano-convex hyper-hemispherical lens further improves the SNR by 0.6 dB. After optimization, the 16-QAM OFDM data with and without sidelobe filtering are respectively delivered at raw data rates of 16.4 and 18 Gbps with spectral-density usage efficiency as high as 4 bit/s/Hz over 16 m in free space, wherein the BLD carried QAM-OFDM data stream remains its capacity after reformation with sidelobe filtering as the superior inter-carrier-interference immunity reinforces.

19.
Sci Rep ; 7(1): 10469, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874879

RESUMO

Violet laser diode (VLD) based white-light source with high color rendering index (CRI) for lighting communication is implemented by covering with Y3Al5O12:Ce3+ (YAG:Ce) or Lu3Al5O12:Ce3+/CaAlSiN3:Eu2+ (LuAG:Ce/CASN:Eu) phosphorous diffuser plates. After passing the beam of VLD biased at 70 mA (~2I th ) through the YAG:Ce phosphorous diffuser, a daylight with a correlated color temperature (CCT) of 5068 K and a CRI of 65 is acquired to provide a forward error correction (FEC) certified data rate of 4.4 Gbit/s. By using the VLD biased at 122 mA (~3.5I th ) to excite the LuAG:Ce/CASN:Eu phosphorous diffuser with 0.85-mm thickness, a warm white-light source with a CCT of 2700 K and a CRI of 87.9 is obtained at a cost of decreasing transmission capacity to 2.4 Gbit/s. Thinning the phosphor thickness to 0.75 mm effectively reduces the required bias current by 32 mA to achieve the same CCT for the delivered white light, which offers an enlarged CRI of 89.1 and an increased data rate of 4.4 Gbit/s. Further enlarging the bias current to 105 mA remains the white-light transmission capacity at 4.4 Gbit/s but reveals an increased CCT of 3023 K and an upgraded CRI of 91.5.

20.
Opt Express ; 25(14): 16347-16363, 2017 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-28789140

RESUMO

For high-speed optical OFDM transmission applications, a comprehensive comparison of the homemade multi-/few-/single-transverse mode (MM/FM/SM) vertical cavity surface emitting laser (VCSEL) chips is performed. With microwave probe, the direct encoding of pre-leveled 16-QAM OFDM data and transmission over 100-m-long OM4 multi-mode-fiber (MMF) are demonstrated for intra-datacenter applications. The MM VCSEL chip with the largest emission aperture of 11 µm reveals the highest differential quantum efficiency which provides the highest optical power of 8.67 mW but exhibits the lowest encodable bandwidth of 21 GHz. In contrast, the SM VCSEL chip fabricated with the smallest emission aperture of only 3 µm provides the highest 3-dB encoding bandwidth up to 23 GHz at a cost of slight heat accumulation. After optimization, with the trade-off set between the receiving signal-to-noise ratio (SNR) and bandwidth, the FM VCSEL chip guarantees the highest optical OFDM transmission bit rate of 96 Gbit/s under back-to-back case with its strongest throughput. Among three VCSEL chips, the SM VCSEL chip with nearly modal-dispersion free feature is treated as the best candidate for carrying the pre-leveled 16-QAM OFDM data over 100-m OM4-MMF with same material structure but exhibits different oxide-layer confined gain cross-sections with one another at 80-Gbit/s with the smallest receiving power penalty of 1.77 dB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...