Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Nat Commun ; 15(1): 1809, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418489

RESUMO

Further increasing the critical temperature and/or decreasing the stabilized pressure are the general hopes for the hydride superconductors. Inspired by the low stabilized pressure associated with Ce 4f electrons in superconducting cerium superhydride and the high critical temperature in yttrium superhydride, we carry out seven independent runs to synthesize yttrium-cerium alloy hydrides. The synthetic process is examined by the Raman scattering and X-ray diffraction measurements. The superconductivity is obtained from the observed zero-resistance state with the detected onset critical temperatures in the range of 97-141 K. The upper critical field towards 0 K at pressure of 124 GPa is determined to be between 56 and 78 T by extrapolation of the results of the electrical transport measurements at applied magnetic fields. The analysis of the structural data and theoretical calculations suggest that the phase of Y0.5Ce0.5H9 in hexagonal structure with the space group of P63/mmc is stable in the studied pressure range. These results indicate that alloying superhydrides indeed can maintain relatively high critical temperature at relatively modest pressures accessible by laboratory conditions.

2.
J Phys Condens Matter ; 36(7)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37918102

RESUMO

Clathrate hydrideFm3-m-LaH10has been proven as the most extraordinary superconductor with the critical temperatureTcabove 250 K upon compression of hundreds of GPa in recent years. A general hope is to reduce the stabilization pressure and maintain the highTcvalue of the specific phase in LaH10. However, strong structural instability distortsFm3-mstructure and leads to a rapid decrease ofTcat low pressures. Here, we investigate the phase stability and superconducting behaviors ofFm3-m-LaH10with enhanced chemical pre-compression through partly replacing La by Ce atoms from both experiments and calculations. For explicitly characterizing the synthesized hydride, we choose lanthanum-cerium alloy with stoichiometry composition of 1:1. X-ray diffraction and Raman scattering measurements reveal the stabilization ofFm3-m-La0.5Ce0.5H10in the pressure range of 140-160 GPa. Superconductivity withTcof 175 ± 2 K at 155 GPa is confirmed with the observation of the zero-resistivity state and supported by the theoretical calculations. These findings provide applicability in the future explorations for a large variety of hydrogen-rich hydrides.

3.
Adv Sci (Weinh) ; 10(33): e2303639, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37807820

RESUMO

To explore carbide superconductors with higher transition temperature, two novel carbon structures of cage-network are designed and their superconductivity is studied by doping metals. MC6 and MC10 are respectively identified as C24 and C32 cage-network structures. This study finds that both carbon structures drive strong electron-phonon interaction and can exhibit superconductivity above liquid nitrogen temperature. Importantly, the superconducting transition temperatures above 100 K are predicted to be achieved in C24 -cage-network systems doped by Na, Mg, Al, In, and Tl at ambient pressure, which is far higher than those in graphite, fullerene, and other carbides. Meanwhile, the superconductivity of cage-network carbides is also found to be sensitive to the electronegativity and concentration of dopant M. The result indicates that the higher transition temperatures can be obtained by optimizing the carbon-cage-network structures and the doping conditions. The study suggests that the carbon-cage-network structure is a direction to explore high-temperature superconducting carbides.

4.
Nano Lett ; 23(10): 4183-4190, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37158482

RESUMO

Locally routing the exciton emissions in two-dimensional (2D) transition-metal dichalcogenides along different directions at the nanophotonic interface is of great interest in exploiting the promising 2D excitonic systems for functional nano-optical components. However, such control has remained elusive. Herein we report on a facile plasmonic approach for electrically controlled spatial modulation of the exciton emissions in a WS2 monolayer. The emission routing is enabled by the resonance coupling between the WS2 excitons and the multipole plasmon modes in individual silver nanorods placed on a WS2 monolayer. Different from prior demonstrations, the routing effect can be modulated by the doping level of the WS2 monolayer, enabling electrical control. Our work takes advantage of the high-quality plasmon modes supported by simple rod-shaped metal nanocrystals for the angularly resolved manipulation of 2D exciton emissions. Active control is achieved, which offers great opportunities for the development of nanoscale light sources and nanophotonic devices.

5.
J Phys Chem Lett ; 13(32): 7439-7447, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35929958

RESUMO

Two-dimensional (2D) electrides, characterized by excess interstitial anionic electron (IAE) in a crystalline 2D material, offer promising opportunities for the development of electrode materials, in particular in rechargeable metal-ion batteries applications. Although a few such potential electride materials have been reported, they generally show low metal-ion storage capacity, and the effect of IAE on the ion storage performance remains elusive so far. Here we report a novel 2D electride, [Sc3Si2]1+·1e-, with fascinating IAE-driven high alkali metal-ion storage capacity. In particular, its K-ion specific capacity can reach up to 1497 mA h g-1, higher than any previously reported 2D materials-based anodes in K-ion batteries (PIBs). The IAE in the [Sc3Si2]1+·1e- crystal accounts for such high capacity behavior, which can drift away and balance the charge on the metal-cation, playing a crucial role in stabilizing the metal-ion adsorption and enhancing multilayer-ions adsorption. This proposed IAE-driven storage mechanism provides an unprecedented avenue for the future design of high storage capacity electrode materials.

6.
J Phys Chem Lett ; 12(23): 5601-5607, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34110170

RESUMO

Pressure is a unique thermodynamic variable to explore the phase competitions and novel phases inaccessible at ambient conditions. The resistive switching material GaTa4Se8 displays several quantum phases under pressure, such as a Jeff = 3/2 Mott insulator, a correlated quantum magnetic metal, and d-wave topological superconductivity, which has recently drawn considerable interest. Using high-pressure Raman spectroscopy, X-ray diffraction, extended X-ray absorption, transport measurements, and theoretical calculations, we reveal a complex phase diagram for GaTa4Se8 at pressures exceeding 50 GPa. In this previously unattained pressure regime, GaTa4Se8 ranges from a Mott insulator to a metallic phase and exhibits superconducting phases. In contrast to previous studies, we unveil a hidden correlation between the structural distortion and band gap prior to the insulator-to-metal transition, and the metallic phase shows superconductivity with structural and magnetic properties that are distinctive from the lower-pressure phase. These discoveries highlight that GaTa4Se8 is a unique material to probe novel quantum phases from a structural, metallicity, magnetism, and superconductivity perspective.

7.
J Phys Condens Matter ; 33(2): 025601, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-32906113

RESUMO

Using the constrained-path quantum Monte Carlo method, we systematically study the half-filled Hubbard model on AA-stacked honeycomb lattice. Our simulations demonstrate that a dominant chiral d + id wave superconductivity can be induced by a perpendicular electric field. At a fixed electric field, the effective pairing interaction of chiral d + id superconductivity exhibits an increasing behavior with increasing the on-site Coulomb interaction. We attribute the electric field-induced d + id superconductivity to an increased density of states near the Fermi energy and robust antiferromagnetic spin correlation upon turning on electric field. Our results strongly suggest that the AA-stacked graphene system is a good candidate for chiral d + id superconductor.

8.
Sci Adv ; 6(51)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33355137

RESUMO

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.

9.
Phys Rev Lett ; 125(19): 190401, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33216574

RESUMO

At low temperature, collective excitations of one-dimensional (1D) interacting fermions exhibit spin-charge separation, a unique feature predicted by the Tomonaga-Luttinger liquid (TLL) theory, but a rigorous understanding remains challenging. Using the thermodynamic Bethe ansatz (TBA) formalism, we analytically derive universal properties of a 1D repulsive spin-1/2 Fermi gas with arbitrary interaction strength. We show how spin-charge separation emerges from the exact TBA formalism, and how it is disrupted by the interplay between the two degrees of freedom that brings us beyond the TLL paradigm. Based on the exact low-lying excitation spectra, we further evaluate the spin and charge dynamical structure factors (DSFs). The peaks of the DSFs exhibit distinguishable propagating velocities of spin and charge as functions of interaction strength, which can be observed by Bragg spectroscopy with ultracold atoms.

10.
Phys Chem Chem Phys ; 22(41): 23847-23855, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33073276

RESUMO

To find potential alkaline-earth metal-doped aromatic superconductors and clarify the origin of superconductivity in metal-doped phenanthrene (PHN) systems, we have systematically investigated the crystal and electronic structures of bivalent metal (Mg, Ca, Sr and Ba)-doped PHNs by first-principles calculations. The results show that only Ba1.5PHN can satisfy the conditions of both thermodynamic stability and metallization. We predicted that Ba1.5PHN is superconducting with the critical temperature of 5.3 K. Based on the metal atomic radius and electronegativity and combined with monovalent metal- and trivalent metal-doped PHNs, the relations among charge transfer, metallization, and superconductivity were analyzed. The results indicate that the electronegativity of the metal element rather than the atomic radius is predominant in the charge transfer and superconductivity of metal-doped phenanthrene.

11.
Nanoscale ; 12(3): 1975-1984, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31912072

RESUMO

Plasmonic Fano resonance has attracted extensive attention due to its many applications, including plasmonic sensing, electromagnetically induced transparency, light trapping and stopping, due to its narrow linewidth and asymmetric spectral shape. However, many metal nanostructures are designed with complex geometries to generate Fano resonance and few of them can support a deep Fano dip. Herein we report on the strengthening of the Fano resonance on silicon-supported Au nanoplates through the formation of (Au nanosphere)-(Au nanoplate) heterodimers. The deposition of the Au nanosphere on the top can greatly strengthen the substrate-induced Fano resonance of the Au nanoplate with a deep dip. We also observe that the replacement of the Au nanosphere with a Au nanocube can suppress the excitation of the Fano resonance in the heterodimer. When the sharp corners and edges of the nanocubes gradually become rounded, the Fano resonance appears again with increasing asymmetry. Both the dip depth and wavelength of the Fano resonance can be independently tailored by varying the nanosphere diameter and the nanoplate thickness, respectively. We believe that our results provide an attractive and facile platform for modulating Fano dips and constructing Fano resonance-based devices.

12.
ACS Nano ; 14(1): 736-745, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31841297

RESUMO

Optical excitation, subsequent energy transfer, and emission are fundamental to many physical problems. Optical antennas are ideal candidates for manipulating these processes. We extend energy transfer to second- and third-harmonic (SH and TH) fields through the collaborative susceptibility χ(n) (n = 1, 2, 3) resonances of nonlinear optical antennas. Hollow gold stars, with a broadband response covering the fundamental, SH, and TH frequencies, are synthesized as nonlinear antennas. Harmonic resonance energy transfer through a χ(3) → χ(1) collaboration is revealed. A χ(3) → χ(2) collaboration is uncovered, with largely enhanced SH radiation demonstrated by exciting the three resonances at the fundamental, SH, and TH frequencies. A theoretical model of the effective nonlinear susceptibilities is proposed to calculate the efficiencies of the two nonlinear energy transfer processes.

13.
Light Sci Appl ; 8: 39, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016015

RESUMO

Elongated plasmonic nanoparticles have been extensively explored over the past two decades. However, in comparison with the dipolar plasmon mode that has attracted the most interest, much less attention has been paid to multipolar plasmon modes because they are usually thought to be "dark modes", which are unable to interact with far-field light efficiently. Herein, we report on an intriguing far-field scattering phenomenon, colour routing, based on longitudinal multipolar plasmon modes supported by high-aspect-ratio single Ag nanorods. Taking advantage of the distinct far-field behaviours of the odd and even multipolar plasmon modes, we demonstrate two types of colour routing, where the incident white light can be scattered into several beams with different colours as well as different propagation directions. Because of the narrow linewidths of the longitudinal multipolar plasmon modes, there is little spectral overlap between the adjacent peaks, giving rise to outstanding colour selectivity. Our experimental results and theoretical model provide a simple yet effective picture for understanding the far-field behaviour of the longitudinal multipolar plasmon modes and the resultant colour routing phenomenon. Moreover, the outstanding colour routing capability of the high-aspect-ratio Ag nanorods enables nanoscale optical components with simple geometries for controlling the propagation of light below the diffraction limit of light.

14.
J Chem Phys ; 150(7): 074306, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795678

RESUMO

To clarify the charge transfer effect on Raman spectra of aromatic hydrocarbons, we investigate the Raman shifts of phenanthrene, p-terphenyl, and anthracene and their negatively charged counterparts by using density functional theory. For the three molecules, upon charge increasing, the computed Raman peaks generally shift down with the exception of a few shifting up. The characteristic Raman modes in the 0-1000 cm-1 region persist up, while some high-frequency ones change dramatically with three charges transferred. The calculated Raman shifts for one- and two-electron transfer are in agreement with the measured Raman spectra, and in accordance to the stoichiometric ratios 1:1 and 2:1 of the metal atom and aromatic hydrocarbon molecule in recent experimental and theoretical studies. Our theoretical results provide the fundamental information to elucidate the Raman shifts and the stoichiometric ratios for alkali-metal-doped aromatic hydrocarbons.

15.
Nano Lett ; 19(3): 2005-2011, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30721073

RESUMO

The magnetic plasmons of three-dimensional nanostructures have unique optical responses and special significance for optical nanoresonators and nanoantennas. In this study, we have successfully synthesized colloidal Au and AuAg nanocups with a well-controlled asymmetric geometry, tunable opening sizes, and normalized depths ( h/ b, where h is depth and b is the height of the templating PbS nanooctahedrons), variable magnetic plasmon resonance, and largely enhanced second-harmonic generation (SHG). The most-efficient SHG of the bare Au nanocups is experimentally observed when the normalized depth h/ b is adjusted to ∼0.78-0.79. We find that the average magnetic field enhancement is maximized at h/ b = ∼0.65 and reveal that the maximal SHG can be attributed to the joint action of the optimized magnetic plasmon resonance and the "lightning-rod effect" of the Au nanocups. Furthermore, we demonstrate for the first time that the AuAg heteronanocups prepared by overgrowth of Ag on the Au nanocups can synergize the magnetic and electric plasmon resonances for nonlinear enhancement. By the tailoring of the dual resonances at the fundamental excitation and second-harmonic wavelengths, the far-field SHG intensity of the AuAg nanocups is enhanced 21.8-fold compared to that of the bare Au nanocups. These findings provide a strategy for the design of nonlinear optical nanoantennas based on magnetic plasmon resonances and can lead to diverse applications ranging from nanophotonics to biological spectroscopy.

16.
J Phys Condens Matter ; 31(15): 155302, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30677003

RESUMO

We study the phenomena of overlapping of Kondo clouds in an open triple quantum dots (OTQDs) system by using the dissipaton equation of motion (DEOM) theory. Motivated by the long-rang interaction of the TQDs system demonstrated in Cheng et al (2017 Phys. Rev. B 95 155417), we present a comprehensive picture of the long-range overlapping behavior of Kondo clouds via investigation of the spectral functions, spin-spin correlation, dot occupancies and susceptibility. For the configuration [Formula: see text], a conduction electron peak occurs in the spectral function of intermediate QD in the Kondo regime. This peak results from the overlapping of the two Kondo clouds forming from between the two peripheral QDs and leads, enhances with decreasing temperature and increasing dot-lead coupling. Both the spin-spin correlations between the two adjacent QDs and the two peripheral QDs own negative values. It also confirms the physical picture of the overlapping between left and right Kondo clouds via the intermediate QD. To understand the physical insight, we examine also the electron occupacies and the spectral functions, with their dependence on the temperature and dot-lead coupling. In addition, a distinct nonmonotonic behavior of the susceptibility associated with the Kondo clouds is characterized.

17.
J Phys Condens Matter ; 31(16): 165701, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30673647

RESUMO

In hybrid organic/inorganic perovskites, the majority of charge carriers are large polarons. Slow recombination of the large polarons underlies long carrier lifetime and diffusion length, crucial to optoelectronic applications of the perovskites. However, microscopic mechanisms by which the large polarons recombine remain largely unknown. Here we propose a theoretical model to elucidate radiative recombination of large polarons. Six annihilation pathways are identified which involve the formation of mobile and immobile 'dying pairs', both responsible for charge recombination. The formation probability of the 'dying pair' and the corresponding annihilation rate can be estimated. The product of the formation probability and the annihilate rate gives rise to recombination rate along each pathway and weighted sum of the recombination rates yields an overall rate of radiative recombination in perovskites. The theory sheds light on the physical mechanism by which large polarons recombine via the formation of the dying pairs, assisted by thermal activation and quantum tunneling. The predictions from the theory in general agree well to corresponding experimental measurements on monomolecular and bimolecular recombination rates as well as peak frequency of photoluminescence spectrum.

18.
J Phys Chem Lett ; 10(1): 40-47, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30472837

RESUMO

To explore more novel superconductors, we have synthesized the potassium-doped p-quaterphenyl by an annealing or just a pestling process. The Meissner effect with critical temperatures ranging from 3.5 to 120 K is found by the magnetic susceptibility measurements in doped samples. The primary superconducting phase with a critical temperature of 7.2 K can be duplicated in the annealed and pestled samples. The charge transfer from metal to molecule is confirmed from the Raman scattering measurements. The X-ray diffraction analysis suggests that the low-temperature superconducting phase is due to the two-electron doping, whereas the high-temperature one corresponds to the high doping content. The occurrence of superconductivity in potassium-doped p-quaterphenyl supports the chain link organic molecules as promising candidates for high-temperature superconductors. This work also provides a simple method for synthesizing organic superconductors by pestling without annealing.

19.
ACS Nano ; 12(12): 12541-12550, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30462918

RESUMO

Quantum tunneling plays an important role in coupled plasmonic nanocavities with ultrasmall gap distances. It can lead to intriguing applications such as plasmon mode excitation, hot carrier generation, and construction of ultracompact electro-optic devices. Molecular junctions bridging plasmonic nanocavities can provide a tunneling channel at moderate gap distances and therefore allow for the facile fabrication of quantum plasmonic devices. Herein we report on the large-scale bottom-up fabrication of molecular junction-bridged plasmonic nanocavities formed from Au nanoplate-Au nanosphere heterodimers. When the molecular junction turns from insulating to conductive, a distinct spectral change is observed, together with the emergence of a high-order charge transfer plasmon mode. The evolution of the electron tunneling-induced plasmon mode also greatly affects the Fano resonance feature in the scattering spectrum of the individual heterodimers. The molecular conductance at optical frequencies is estimated. The molecular junction-assisted electron tunneling is further verified by the reduced surface-enhanced Raman intensities of the molecules in the plasmonic nanocavity. We believe that our results provide an interesting system that can boost the investigation on the use of molecular junctions to modulate quantum plasmon resonances and construct molecular plasmonic devices.

20.
Phys Chem Chem Phys ; 20(39): 25217-25223, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30259020

RESUMO

Phenyl molecules are proposed as potential high-temperature superconductors due to exhibiting interesting properties. Here, we report the discovery of superconductivity with the critical temperature (Tc) of ∼7.2 Kelvin in potassium (K)-doped biphenyl (C12H10). The dc magnetic susceptibility measurements provide solid evidence for the presence of the Meissner effect in KxC12H10. The Raman spectra detected bipolaronic characteristics in this superconducting state, which are proposed to account for the electron pairing. Theoretical simulations provided the information of the crystal structure of KxC12H10. Combining XRD data with formation energy, we suggest that the superconducting phase corresponds to K2C12H10 or with a small charge fluctuation in a layered structure. The discovery of superconductivity in K-doped biphenyl vastly expands the potential applications in the superconducting field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...