Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(40): eadg9376, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37792938

RESUMO

Neuromorphic computing has shown remarkable capabilities in silicon-based artificial intelligence, which can be optimized by using Mott materials for functional synaptic connections. However, the research efforts focus on two-terminal artificial synapses and envisioned the networks controlled by silicon-based circuits, which is difficult to develop and integrate. Here, we propose a dynamic network with laser-controlled conducting filaments based on electric field-induced local insulator-metal transition of vanadium dioxide. Quantum sensing is used to realize conductivity-sensitive imaging of conducting filament. We find that the location of filament formation is manipulated by focused laser, which is applicable to simulate the dynamical synaptic connections between the neurons. The ability to process signals with both long-term and short-term potentiation is further demonstrated with ~60 times on/off ratio while switching the pathways. This study opens the door to the development of dynamic network structures depending on easily controlled conduction pathways, mimicking the biological nervous systems.

2.
Rev Sci Instrum ; 92(4): 044904, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243481

RESUMO

The nitrogen-vacancy center in diamond has been broadly applied in quantum sensing since it is sensitive to different physical quantities. Meanwhile, it is difficult to isolate disturbances from unwanted physical quantities in practical applications. Here, we present a fiber-based quantum thermometer by tracking the sharp-dip in the zero-field optically detected magnetic resonance spectrum in a high-density nitrogen-vacancy ensemble. Such a scheme can not only significantly isolate the magnetic field and microwave power drift but also improve the temperature sensitivity. Thanks to its simplicity and compatibility in implementation and robustness, this quantum thermometer is then applied to the surface temperature imaging of an electronic chip with a sensitivity of 18mK/Hz. It thus paves the way to high sensitive temperature measurements in ambiguous environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...