Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 332(1): 46-56, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19828878

RESUMO

The critical role of phosphoinositide 3-kinase gamma (PI3Kgamma) in inflammatory cell activation and recruitment makes it an attractive target for immunomodulatory therapy. 5-Quinoxilin-6-methylene-1,3-thiazolidine-2,4-dione (AS605240), a potent PI3Kgamma inhibitor, has been reported to ameliorate chronic inflammatory disorders including rheumatoid arthritis, systemic lupus erythematosus, and atherosclerosis. However, its in vivo effect on intestinal inflammation remains unknown. Here we evaluated the protective and therapeutic potentials of AS605240 in mice with dextran sodium sulfate (DSS)-induced acute and chronic colitis. Our results showed that AS605240 improved survival rate, disease activity index, and histological damage score in mice administered DSS in both preventive and therapeutic studies. AS605240 treatment also significantly inhibited the increase in myeloperoxidase levels, macrophage infiltration, and CD4(+) T-cell number in the colon of DSS-fed mice. The DSS-induced overproduction of colonic proinflammatory cytokines including interleukin (IL)-1beta, tumor necrosis factor-alpha, and interferon-gamma was significantly suppressed in mice undergoing AS605240 therapy, whereas colonic anti-inflammatory cytokines such as IL-4 were up-regulated. The down-regulation of the phospho-Akt level in immunological cells from the inflamed colon tissue and spleen of AS605240-treated mice was detected both by immunohistochemical analysis and Western blotting. These findings demonstrate that AS605240 may represent a promising novel agent for the treatment of inflammatory bowel disease by suppressing leukocyte infiltration as well as by immunoregulating the imbalance between proinflammatory and anti-inflammatory cytokines.


Assuntos
Colite/prevenção & controle , Inibidores Enzimáticos/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase , Quinoxalinas/uso terapêutico , Tiazolidinedionas/uso terapêutico , Doença Aguda , Animais , Western Blotting , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/citologia , Doença Crônica , Colite/induzido quimicamente , Colite/enzimologia , Colite/imunologia , Colite/patologia , Colo/efeitos dos fármacos , Colo/enzimologia , Colo/imunologia , Colo/patologia , Citocinas/biossíntese , Citocinas/imunologia , Sulfato de Dextrana , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Citometria de Fluxo , Imunofluorescência , Imuno-Histoquímica , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Quinoxalinas/administração & dosagem , Quinoxalinas/farmacologia , Índice de Gravidade de Doença , Baço/efeitos dos fármacos , Baço/imunologia , Tiazolidinedionas/administração & dosagem , Tiazolidinedionas/farmacologia
2.
Ai Zheng ; 27(6): 571-4, 2008 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-18570727

RESUMO

BACKGROUND & OBJECTIVE: The most common haematological malignancy is leukaemia. Differentiation induction is considered as one of the effective therapies for leukemia. Piperine, an alkaloid extracted from piperaceae, has been reported to display a variety of pharmacological activities, including sedation, anti-inflammation and antitumor effects. This study was to investigate the effect of piperine on proliferation, differentiation and apoptosis of erythroleukemia K562 cells. METHODS: Inhibition of cell growth was determined by trypan blue exclusion test; cell cycle and cell apoptosis were analyzed by FACS; induction of cell differentiation was confirmed by morphological observation, nitroblue tetrazolium (NBT) reduction assay and measurements of CD33 and CD14 expressions. RESULTS: Piperine induced K562 cells to differentiate into macrophages/monocytes at 20 micromol/L or 40 micromol/L. After incubation with 40 mumol/L piperine for 3 d, the NBT reduction rate of K562 cells increased from (8.5+/-1.9)% to (76.7+/-5.3)%; after incubation with 20 mumol/L piperine for 3 d, the mean fluorescence intensity (MFI) of CD33 in K562 cells was decreased by 42.05% (P<0.01), whereas the MFI of CD14 was doubled (P<0.01). Piperine inhibited the proliferation of K562 cells in a dose-and time-dependent manner at a concentration of above 20 micromol/L. CONCLUSION: Piperine can induce K562 cells to differentiate into macrophages/monocytes.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Células K562/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Células K562/citologia , Receptores de Lipopolissacarídeos/análise , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico
3.
J Cancer Res Clin Oncol ; 134(9): 937-45, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18350317

RESUMO

PURPOSE: Honokiol has been receiving attention as an anticancer agent because of its anti-tumor effect. In the current study, we encapsulated honokiol with liposome and tested it on cisplatin-sensitive (A2780s) and -resistant (A2780cp) human ovarian cancer models. METHODS: The anti-tumor activity of liposomal honokiol (Lipo-HNK) was evaluated in nude mice bearing A2780s and A2780cp s.c. tumors. Mice were treated twice weekly with i.v. administration of Lipo-HNK (10 mg/kg), control liposome (10 mg/kg), 0.9% NaCl solution or weekly with intraperitoneally administered cisplatin (5 mg/kg) for 3 weeks. Tumor volume and survival time were observed. Assessment of apoptotic cells by TUNEL assay was conducted in tumor tissue. Microvessel density within tumor tissue was determined by CD34 immunohistochemistry. For in vitro study, induction of apoptosis by Lipo-HNK was examined by PI staining fluorescence microscopy, DNA fragmentation assay and flow cytometric analysis. RESULTS: Administration of Lipo-HNK resulted in significant inhibition (84-88% maximum inhibition relative to controls) in the growth of A2780s and A2780cp tumor xenografts and prolonged the survival of the treated mice. These anti-tumor responses were associated with marked increases in tumor apoptosis, and reductions in intratumoral microvessel density. CONCLUSIONS: The present findings suggest that Lipo-HNK may provide an effective approach to inhibit tumor growth in both cisplatin sensitive and -resistant human ovarian cancer with minimal side effects.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Bifenilo/farmacologia , Cisplatino/farmacologia , Lignanas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/uso terapêutico , Compostos de Bifenilo/uso terapêutico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Imuno-Histoquímica , Lignanas/uso terapêutico , Lipossomos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...