Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16062-16074, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526168

RESUMO

Efficient charge transfer and light-trapping units are pivotal prerequisites in the realm of Ti-based photoanode photoelectrochemical (PEC) water splitting. In this work, we successfully synthesized a ternary carbon quantum dots/Bi2S3 quantum dots/Nb-doped TiO2 nanotube arrays (CQDs/Bi2S3/TiNbO) composite photoanode for PEC water splitting. CQDs/Bi2S3/TiNbO composite photoanode exhibited a considerably elevated photocurrent density of 8.80 mA cm-2 at 1.23 V vs the reversible hydrogen electrode, which was 20.00 times better than that of TiO2 (0.44 mA cm-2). Furthermore, the CQDs/Bi2S3/TiNbO composite photoanode attested to exceptional stability, maintaining 92.54% of its initial current after 5 h of stability measurement. Nb-doping boosted the electrical conductivity, facilitating charge transfer at the solid-liquid interface. Moderate amounts of Bi2S3 quantum dots (QDs) and CQDs deposited on TiNbO provided abundant active sites for the electrolyte-photoanode interaction. Simultaneously, Bi2S3 QDs and CQDs synergistically functioned as light-trapping units to broaden the light absorption range from 396 to 530 nm, stimulating increased carrier generation within the composite photoanode. In comparison with pristine TiO, CQDs/Bi2S3/TiNbO photoanodes possessed a superior ability to promote interfacial reactions. This study may provide a strategy for developing high-performance Ti-based photoanodes with efficient charge transfer and light trapping units for highly driving solar-to-hydrogen conversion.

2.
ACS Omega ; 7(35): 31081-31097, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092603

RESUMO

The poor biotribological properties and bioinertness of Ti6Al4V have restricted its application in biomedical materials. In this study, microgrooves of different widths were prepared on the surface of a Ti6Al4V alloy by laser treatment. The tribological properties under dry lubrication and simulated body fluid (SBF) lubrication conditions, the electrochemical corrosion properties in SBF solution, and the bone marrow mesenchymal stem cell (BMSC) behavior on the surfaces were systematically tested. The corresponding mechanisms were discussed. The results showed that Ti6Al4V with a microgroove width of 45 µm (Ti64-45) exhibited excellent wear resistance with decreasing wear rates of 89.79 and 85.43% under dry friction and SBF lubrication compared to the Ti64 sample, which might be due to the increase of surface microhardness. Moreover, the excellent anticorrosion performance of Ti64-45 was attributed to the grain refinement on the titanium alloy surface with a lower volume fraction ratio of ß phase to α phase. In addition, the microgrooves with a width of 45 µm are more conducive to BMSC proliferation and adhesion, related to promoting cell signal transduction due to cell extrusion. These studies imply that the microgroove structures are potential for application in the medical field.

3.
Mol Nutr Food Res ; 65(17): e2100406, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34216418

RESUMO

SCOPE: The intestinal epithelium is nourished by various nutrients and subjected to persistent and widespread feed-derived mycotoxin stress. l-Carnosine (LC) possesses robust antioxidant activity; however, its role in protecting intestinal mucosa against deoxynivalenol (DON) is still unclear. METHODS AND RESULTS: In this study, 300 mg kg-1 BW LC and 3 mg kg-1 BW DON are orally administered to mice either alone or in combination for 10 days to investigate the role of LC in protecting the intestine against DON. This study found that LC alleviates the growth retardation of mice and repairs the damaged jejunal structure and barrier functions under DON exposure. LC rescues the intestinal stem cells (ISCs), increases the growth advantage in enteroids derived from jejunal crypts of mice in each group ex vivo, improves the proliferation and apoptosis of intestinal cells, and promotes ISC differentiation into absorptive cells, goblet cells, and Paneth cells. Furthermore, LC activates Nrf2 signaling by binding to Keap1 to reverse the striking DON-induced increase in ROS levels. CONCLUSION: The study findings unveil that LC potentiates the antioxidant capacity of ISCs by regulating the Keap1/Nrf2 signaling pathway, which contributes to the intestinal epithelial regeneration response to DON insult.


Assuntos
Carnosina/farmacologia , Intestinos/efeitos dos fármacos , Tricotecenos/toxicidade , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/citologia , Intestinos/metabolismo , Intestinos/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
4.
J Colloid Interface Sci ; 600: 72-82, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34004431

RESUMO

Rational design of composite materials with unique core-shell nanoflower structures is an important strategy for improving the electrochemical properties of supercapacitors such as capacitance and cycle stability. Herein, a two-step electrodeposition technique is used to orderly synthesize CuCo2O4 and CoS on Ni foam coated with Cu/Co bimetal metal organic framework (Cu/Co-MOF) to fabricate a hierarchical core-shell nanoflower material (CuCo2O4@CoS-Cu/Co-MOF). This unique structure can increase the electrochemically active site of the composite, promoting the Faradaic redox reaction and enhancing its electrochemical properties. CuCo2O4@CoS-Cu/Co-MOF shows a prominent specific capacitance of 3150 F g-1 at 1 A g-1, marvelous rate performance of 81.82% (2577.3 F g-1 at 30 A g-1) and long cycle life (maintaining 96.74% after 10,000 cycles). What is more, the assembled CuCo2O4@CoS-Cu/Co-MOF//CNTs device has an energy density of 73.19 Wh kg-1 when the power density is 849.94 W kg-1. It has unexpected application prospects.

5.
Anal Chem ; 93(2): 946-955, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33206502

RESUMO

Nonspecific binding and weak spectral discernment are the main challenges for surface-enhanced Raman scattering (SERS) detection, especially in real sample analysis. Herein, molecularly imprinted polymer (MIP)-based core-shell AuNP@polydopamine (AuNP@PDA-MIP) nanoparticles (NPs) are designed and immobilized on an electrochemically reduced MoS2-modified screen-printed electrode (SPE). This portable electrochemical-Raman interface offers the dual functions of electrokinetic preseparation (EP) and MIP trapping of charged molecules so that a reliable SERS recognition with molecular selectivity and high sensitivity can be achieved. Core-shell AuNP@PDA-MIP NPs can be controllably synthesized, possess predesigned specific recognition, and provide "hot spots" at the junction of NPs. The introduction of an electric field enables the autonomous exclusion and separation of similarly charged molecules as well as attraction and concentration of the oppositely charged molecules by electrostatic attraction. Subsequently, the specific MIP recognition cavities allow selective adsorption of targets on the interface without the interference of analogues. Owing to the distinctive design of the multiple coupling separation, trapping, and enrichment strategies, the MIP-based SERS-active interface can be used for label-free detection of charged molecules in real samples without pretreatment. As a proof-of-concept study, label-free SERS detection of charged phthalate plasticizers (PAEs) was demonstrated with a detection limit as low as 2.7 × 10-12 M for dimethyl phthalate (DMP) and 2.3 × 10-11 M for di(2-ethylhexyl) phthalate (DEHP). This sensing strategy for in situ SERS analysis of charged pollutants or toxins holds vast promises for a wide range of in-field applications.


Assuntos
Impressão Molecular , Ácidos Ftálicos/análise , Plastificantes/análise , Ouro/química , Indóis/química , Estrutura Molecular , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Análise Espectral Raman , Propriedades de Superfície
6.
Environ Pollut ; 262: 114290, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32155551

RESUMO

The micronutrient, zinc, plays a vital role in modulating cellular signaling recognition and enhancing intestinal barrier function. However, the precise mechanisms underlying the zinc regulation of intestinal stem cell (ISC) renewal and regeneration ability, which drive intestinal epithelial turnover to maintain the intestinal barrier, under physiological and pathological conditions are unknown. In this study, we used in vivo mouse plus ex vivo enteroid model to investigate thoroughly the protection efficacy of zinc L-aspartate (Zn-Asp) on intestinal mucosal integrity exposed to deoxynivalenol (DON). The results showed that 10 rather than 20 mg/kg body weight (BW) Zn-Asp (calculation in zinc) significantly increased the jejunum mass and ameliorated mucosa injury caused by 2 mg/kg BW DON treatment, including improvement of the intestinal morphology and barrier, as well as enteroid-forming and -budding efficiency, which was expanded from crypt cells isolated from jejunum of mice in each group. The repair process stimulated by Zn-Asp was also accompanied by increased fluorescence signal intensity of KRT20 and Villin; increased numbers of MUC2+, CAG+, LYZ+, BrdU+ and Ki67+ cells in mouse jejunum; and protein expression of Ki67 and PCNA in the jejunum, crypt and enteroid. Simultaneously, Zn-Asp increased ISC activity to promote intestinal epithelial renewal even under physiological conditions. These results were further verified in ex vivo enteroid culture experiments, which were treated with 100 µmol/L Zn-Asp (calculation in zinc) and 100 ng/mL DON for 72 h. Furthermore, we demonstrated that Zn-Asp improved intestinal integrity or accelerated wound healing along with Wnt/ß-catenin signaling upregulation or reactivation. Our findings indicate Zn-Asp, especially Zn, enhances ISC activity to maintain the intestinal integrity by activating the Wnt/ß-catenin signaling, which sheds some light upon effective preventive strategies for intestinal injury induced by mycotoxin based on ISCs with exogenous zinc preparations in the proper drugs, health foods or qualified feed.


Assuntos
Ácido Aspártico , Via de Sinalização Wnt , Animais , Proliferação de Células , Mucosa Intestinal , Camundongos , Células-Tronco , Tricotecenos , Zinco , beta Catenina
7.
J Agric Food Chem ; 67(41): 11464-11473, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31532211

RESUMO

The intestinal epithelium is derived from intestinal stem cells (ISCs) and has direct contact with nutrients and toxins. However, whether methionine (Met) or a methionine hydroxyl analogue (2-hydroxy-4-(methylthio)butanoic acid (HMB)) can alleviate deoxynivalenol (DON)-induced intestinal injury remains unknown. Mice were treated orally with Met or HMB on days 1-11 and with DON on days 4-8. On day 12, the mice were sacrificed, and the jejunum was collected for crypt isolation and culture. Mouse enteroids were treated with DON and Met or HMB ex vivo. The results showed that Met and HMB increased the average daily feed intake and average daily gain of the mice. Met and HMB also improved the jejunal structure and barrier integrity and promoted ISC expansion, as indicated by the increased enteroid formation efficiency and area, under DON-induced injury conditions. In addition, DON-induced decreases in ISC activity were rescued Wnt/ß-catenin signaling reactivation by Met or HMB in vivo and ex vivo. Collectively, our findings reveal that Met and HMB alleviated DON-induced intestinal injury by improving ISC expansion and reactivating Wnt/ß-catenin signaling. Our study thus provides a nutritional intervention for intestinal diseases involving Wnt/ß-catenin signaling.


Assuntos
Enteropatias/tratamento farmacológico , Metionina/análogos & derivados , Metionina/administração & dosagem , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Tricotecenos/toxicidade , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Humanos , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/fisiopatologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/lesões , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Células-Tronco/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
Food Chem Toxicol ; 131: 110579, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202940

RESUMO

Disintegration of the intestine caused by deoxynivalenol (DON), which is a fungal metabolite found in cereal grain-based human and animal diets, triggers severe intestinal inflammatory disease. Hydrolyzed wheat gluten (HWG) can promote the development of intestine. Therefore, HWG was administered orally to male mice on 1-14 days, and DON was administered to them on 4-11 days. Feed, water intake and body weight were recorded all over the experimental period. Blood samples were collected then the mice were sacrificed to collect the jejunum for crypt isolation and culture. The intestinal morphology was observed by electron microscopy, and Western blotting was used to investigate intestinal stem cell (ISC) proliferation and differentiation, as well as the primary regulatory mechanism of the Wnt/ß-catenin signaling. The results showed that HWG increased the average daily gain and average daily water intake of mice under DON-induced injury conditions, and increased the jejunum weight, villous height in the jejunum, and promoted jejunal crypt cell expansion. The DON-induced decrease in Wnt/ß-catenin activity, the expression of Ki67, PCNA and KRT20 were rescued by HWG in the jejunum, crypt and enteroid, as well as the number of goblet cells and Paneth cells. Furthermore, HWG increased jejunum diamine oxidase (DAO) activity. In conclusion, HWG alleviates DON-induced intestinal injury by enhancing ISC proliferation and differentiation in a Wnt/ß-catenin-dependent manner.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glutens/uso terapêutico , Enteropatias/prevenção & controle , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Fármacos Gastrointestinais/química , Fármacos Gastrointestinais/uso terapêutico , Glutens/química , Hidrólise , Enteropatias/induzido quimicamente , Jejuno/citologia , Jejuno/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico , Tricotecenos , Triticum/química , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
9.
Small ; 15(48): e1901494, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31074934

RESUMO

The rapid development of lightweight and wearable devices requires electronic circuits possessing compact, high-efficiency, and long lifetime in very limited space. Alternating current (AC) line filters are usually tools for manipulating the surplus AC ripples for the operation of most common electronic devices. So far, only aluminum electrolytic capacitors (AECs) can be utilized for this target. However, the bulky volume in the electronic circuits and limited capacitances have long hindered the development of miniaturized and flexible electronics. In this work, a facile laser-assisted fabrication approach toward an in-plane micro-supercapacitor for AC line filtering based on graphene and conventional charge transfer salt heterostructure is reported. Specifically, the devices reach a phase angle of 73.2° at 120 Hz, a specific capacitance of 151 µF cm-2 , and relaxation time constant of 0.32 ms at the characteristic frequency of 3056 Hz. Furthermore, the scan rate can reach up to 1000 V s-1 . Moreover, the flexibility and stability of the micro-supercapacitors are tested in gel electrolyte H2 SO4 /PVA, and the capacitance of micro-supercapacitors retain a stability over 98% after 10 000 cycles. Thus, such micro-supercapacitors with excellent electrochemical performance can be almost compared with the AECs and will be the next-generation capacitors for AC line filters.

10.
RSC Adv ; 8(13): 6806-6813, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540345

RESUMO

In this study, advanced nitrogen-doped porous carbon materials for supercapacitor was prepared using low-cost and environmentally friendly waste lotus stems (denoted as LS-NCs). Nitrogen in the surface functionalities of LS-NCs was investigated using X-ray photoelectron spectroscopy analysis. The sum of pyridine nitrogen (N-6) and pyrrolic/pyridinic (N-5) contents accounted for 94.7% of the total nitrogen and significantly contributed to conductivity. Pore structure and surface area of activated carbons were measured using the Brunauer-Emmett-Teller method. A maximum specific surface area of 1322 m2 g-1 was achieved for LS-NCs. The porous carbons exhibited excellent electrochemical properties with a specific capacitance of 360.5 F g-1 at a current density of 0.5 A g-1 and excellent cycling stability (96% specific capacitance retention after 5000 cycles). The above findings indicate that taking advantage of the unique structure of abundant waste lotus stem provides a low-cost and feasible design for high-performance supercapacitors.

11.
Angew Chem Int Ed Engl ; 56(14): 3867-3871, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28252238

RESUMO

The first example of a heterogeneous iron(III)-catalyzed aerobic oxidation of aldehydes in water was developed. This method utilizes 1 atmosphere of oxygen as the sole oxidant, proceeds under extremely mild aqueous conditions, and covers a wide range of various functionalized aldehydes. Chromatography is generally not necessary for product purification. Its operational simplicity, gram-scale oxidation, and the ability to successively reuse the catalyst, make this new methodology environmentally benign and cost effective. The generality of this methodology gives it the potential to be used on an industrial scale.

12.
ACS Appl Mater Interfaces ; 9(11): 9955-9963, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28224785

RESUMO

We propose a facile synthesis approach for nitrogen doped porous carbon and demonstrate a novel pore-forming method that iron nanoclusters act as a template or activator at different carbonization temperatures based on Fe3+-poly(4-vinyipyridine) (P4VP) coordination. P4VP will completely decompose even in an inert atmosphere, but under the coordination and catalysis of Fe3+, it can be converted to carbon at a very low temperature (400 °C). The aggregation of iron nanoclusters in the carbonization process showed different pore-forming methods at different temperatures. The as-prepared materials possess high specific surface area (up to 1211 m2 g-1), large pore volume (up to 0.96 cm3 g-1), narrow microporosity, and high N content (up to 9.9 wt %). Due to these unique features, the materials show high CO2 uptake capacity and excellent selectivity for CO2/N2 separation. The CO2 uptake capacity of NDPC-2-600 is up to 6.8 and 4.3 mmol g-1 at 0 and 25 °C; the CO2/N2 (0.15/0.85) selectivity at 0 and 25 °C also reaches 18.4 and 15.2, respectively.

13.
Polymers (Basel) ; 8(5)2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979284

RESUMO

Porous polymers, integrating the advantages of porous materials and conventional polymers, have been well developed and exhibited tremendous attention in the fields of material, chemistry and biology. Of these, boron-containing conjugated porous polymers, featuring tunable geometric structures, unique Lewis acid boron centers and very rich physical properties, such as high specific surface, chargeable scaffold, strong photoluminescence and intramolecular charge transfer, have emerged as one of the most promising functional materials for optoelectronics, catalysis and sensing, etc. Furthermore, upon thermal treatment, some of them can be effectively converted to boron-doped porous carbon materials with good electrochemical performance in energy storage and conversion, extensively enlarging the applicable scope of such kinds of polymers. In this review, the synthetic approaches, structure analyses and various applications of the boron-containing conjugated porous polymers reported very recently are summarized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...