Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nat Commun ; 14(1): 1213, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869026

RESUMO

Lymph nodes (LNs) are always embedded in the metabolically-active white adipose tissue (WAT), whereas their functional relationship remains obscure. Here, we identify fibroblastic reticular cells (FRCs) in inguinal LNs (iLNs) as a major source of IL-33 in mediating cold-induced beiging and thermogenesis of subcutaneous WAT (scWAT). Depletion of iLNs in male mice results in defective cold-induced beiging of scWAT. Mechanistically, cold-enhanced sympathetic outflow to iLNs activates ß1- and ß2-adrenergic receptor (AR) signaling in FRCs to facilitate IL-33 release into iLN-surrounding scWAT, where IL-33 activates type 2 immune response to potentiate biogenesis of beige adipocytes. Cold-induced beiging of scWAT is abrogated by selective ablation of IL-33 or ß1- and ß2-AR in FRCs, or sympathetic denervation of iLNs, whereas replenishment of IL-33 reverses the impaired cold-induced beiging in iLN-deficient mice. Taken together, our study uncovers an unexpected role of FRCs in iLNs in mediating neuro-immune interaction to maintain energy homeostasis.


Assuntos
Interleucina-33 , Transdução de Sinais , Masculino , Animais , Camundongos , Tecido Adiposo Branco , Linfonodos , Gordura Subcutânea
2.
Adv Sci (Weinh) ; 9(20): e2200742, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35524581

RESUMO

Dysfunctional triglyceride-very low-density lipoprotein (TG-VLDL) metabolism is linked to metabolic-associated fatty liver disease (MAFLD); however, the underlying cause remains unclear. The study shows that hepatic E3 ubiquitin ligase murine double minute 2 (MDM2) controls MAFLD by blocking TG-VLDL secretion. A remarkable upregulation of MDM2 is observed in the livers of human and mouse models with different levels of severity of MAFLD. Hepatocyte-specific deletion of MDM2 protects against high-fat high-cholesterol diet-induced hepatic steatosis and inflammation, accompanied by a significant elevation in TG-VLDL secretion. As an E3 ubiquitin ligase, MDM2 targets apolipoprotein B (ApoB) for proteasomal degradation through direct protein-protein interaction, which leads to reduced TG-VLDL secretion in hepatocytes. Pharmacological blockage of the MDM2-ApoB interaction alleviates dietary-induced hepatic steatohepatitis and fibrosis by inducing hepatic ApoB expression and subsequent TG-VLDL secretion. The effect of MDM2 on VLDL metabolism is p53-independent. Collectively, these findings suggest that MDM2 acts as a negative regulator of hepatic ApoB levels and TG-VLDL secretion in MAFLD. Inhibition of the MDM2-ApoB interaction may represent a potential therapeutic approach for MAFLD treatment.


Assuntos
Apolipoproteínas B , Fígado Gorduroso , Lipoproteínas VLDL , Fígado , Obesidade , Proteínas Proto-Oncogênicas c-mdm2 , Triglicerídeos , Animais , Apolipoproteínas B/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Humanos , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/complicações , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Triglicerídeos/metabolismo
3.
Eur J Endocrinol ; 186(2): 151-161, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34757919

RESUMO

OBJECTIVE: Peptidase M20 domain containing 1 (PM20D1), a secreted enzyme catalysing condensation of fatty acids and amino acids into the bioactive lipids N-acyl amino acids (NAAA), induces uncoupling protein 1 (UCP1)-independent adaptive thermogenesis in brown/beige adipocytes in mice. This study aimed to explore the associations of the circulating levels of PM20D1 and major NAAA with obesity-related metabolic complications in humans. DESIGN AND METHODS: Serum concentrations of PM20D1 and NAAA (C18:1-Leu and C18:1-Phe) in 256 Chinese subjects, including 78 lean and 178 overweight/obese individuals with or without diabetes, were measured with immunoassays and liquid chromatography-mass spectrometry, respectively. The impact of sulfonylurea and rosiglitazone on their circulating levels was examined in 62 patients with type 2 diabetes. RESULTS: Serum PM20D1 level was significantly elevated in overweight/obese individuals and was closely associated with circulating levels of C18:1-Leu and C18:1-Phe. Furthermore, serum PM20D1, C18:1-Leu and C18:1-Phe concentrations correlated positively with several parameters of adiposity as well as fasting and 2 h postprandial glucose, HbA1c, fasting insulin and HOMA-IR independent of BMI and age. Moreover, a significant elevation in PM20D1, C18:1-Leu and C18:1-Phe concentrations corresponding with increases in the number of components of the metabolic syndrome (MetS) was observed. Treatment with sulfonylurea significantly decreased circulating PM20D1, C18:1-Leu and C18:1-Phe in patients with type 2 diabetes. CONCLUSIONS: Increased serum levels of PM20D1 and its catalytic products NAAA are closely associated with obesity-related glucose dysregulation, insulin resistance and MetS and can be potentially used as clinical biomarkers for diagnosing and monitoring these disorders.


Assuntos
Amidoidrolases/sangue , Resistência à Insulina/fisiologia , Síndrome Metabólica/sangue , Obesidade/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos Transversais , Feminino , Células HEK293 , Humanos , Masculino , Síndrome Metabólica/diagnóstico , Pessoa de Meia-Idade , Obesidade/diagnóstico
4.
Nat Commun ; 12(1): 6637, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789781

RESUMO

Although mitophagy is known to restrict NLRP3 inflammasome activation, the underlying regulatory mechanism remains poorly characterized. Here we describe a type of early endosome-dependent mitophagy that limits NLRP3 inflammasome activation. Deletion of the endosomal adaptor protein APPL1 impairs mitophagy, leading to accumulation of damaged mitochondria producing reactive oxygen species (ROS) and oxidized cytosolic mitochondrial DNA, which in turn trigger NLRP3 inflammasome overactivation in macrophages. NLRP3 agonist causes APPL1 to translocate from early endosomes to mitochondria, where it interacts with Rab5 to facilitate endosomal-mediated mitophagy. Mice deficient for APPL1 specifically in hematopoietic cell are more sensitive to endotoxin-induced sepsis, obesity-induced inflammation and glucose dysregulation. These are associated with increased expression of systemic interleukin-1ß, a major product of NLRP3 inflammasome activation. Our findings indicate that the early endosomal machinery is essential to repress NLRP3 inflammasome hyperactivation by promoting mitophagy in macrophages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endossomos/metabolismo , Inflamassomos/metabolismo , Macrófagos/metabolismo , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Caspase 1/metabolismo , Interleucina-1beta/metabolismo , Lisossomos/metabolismo , Macrófagos/citologia , Camundongos , Mitocôndrias/metabolismo , Mutação , Proteína 3 que Contém Domínio de Pirina da Família NLR/agonistas , Obesidade/metabolismo , Ligação Proteica , Sepse/metabolismo , Proteínas rab5 de Ligação ao GTP/genética
5.
Proc Natl Acad Sci U S A ; 117(45): 28307-28315, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33122440

RESUMO

Filamentous actin (F-actin) cytoskeletal remodeling is critical for glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells, and its dysregulation causes type 2 diabetes. The adaptor protein APPL1 promotes first-phase GSIS by up-regulating soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein expression. However, whether APPL2 (a close homology of APPL1 with the same domain organization) plays a role in ß-cell functions is unknown. Here, we show that APPL2 enhances GSIS by promoting F-actin remodeling via the small GTPase Rac1 in pancreatic ß-cells. ß-cell specific abrogation of APPL2 impaired GSIS, leading to glucose intolerance in mice. APPL2 deficiency largely abolished glucose-induced first- and second-phase insulin secretion in pancreatic islets. Real-time live-cell imaging and phalloidin staining revealed that APPL2 deficiency abolished glucose-induced F-actin depolymerization in pancreatic islets. Likewise, knockdown of APPL2 expression impaired glucose-stimulated F-actin depolymerization and subsequent insulin secretion in INS-1E cells, which were attributable to the impairment of Ras-related C3 botulinum toxin substrate 1 (Rac1) activation. Treatment with the F-actin depolymerization chemical compounds or overexpression of gelsolin (a F-actin remodeling protein) rescued APPL2 deficiency-induced defective GSIS. In addition, APPL2 interacted with Rac GTPase activating protein 1 (RacGAP1) in a glucose-dependent manner via the bin/amphiphysin/rvs-pleckstrin homology (BAR-PH) domain of APPL2 in INS-1E cells and HEK293 cells. Concomitant knockdown of RacGAP1 expression reverted APPL2 deficiency-induced defective GSIS, F-actin remodeling, and Rac1 activation in INS-1E cells. Our data indicate that APPL2 interacts with RacGAP1 and suppresses its negative action on Rac1 activity and F-actin depolymerization thereby enhancing GSIS in pancreatic ß-cells.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia , Glucose/metabolismo , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Técnicas de Silenciamento de Genes , Intolerância à Glucose , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas SNARE/metabolismo , Transcriptoma , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...