Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 11(25): 3017-27, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25808659

RESUMO

Despite the vast progress in chemical vapor deposition (CVD) graphene grown on metals, the transfer process is still a major bottleneck, being not devoid of wrinkles and polymer residues. In this paper, a structure is introduced to directly synthesize few layer graphene on insulating substrates by a laser irradiation heating process. The segregation of graphene layers can be manipulated by tuning the metal layer thickness and laser power at different scanning rates. Graphene deposition and submicrometer patterning resolution can be achieved by patterning the intermediate metal layer using standard lithography methods in order to overcome the scalability issue regardless the resolution of the laser beam. The systematic analysis of the process based on the formation of carbon microchannels by the laser irradiation process can be extended to several materials, thicknesses, and methods. Furthermore, hole and electron mobilities of 500 and 950 cm(2) V(-1) s(-1) are measured. The laser-synthesized graphene is a step forward along the direct synthesis route for graphene on insulators that meets the criteria for photonics and electronics.

2.
Nanoscale ; 7(5): 1678-87, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25423257

RESUMO

Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.

3.
Nano Lett ; 14(6): 3241-6, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24848685

RESUMO

Atomic diffusion is a fundamental process that dictates material science and engineering. Direct visualization of atomic diffusion process in ultrahigh vacuum in situ TEM could comprehend the fundamental information about metal-semiconductor interface dynamics, phase transitions, and different nanostructure growth phenomenon. Here, we demonstrate the in situ TEM observations of the complete replacement of ZnO nanowire by indium with different growth directions. In situ TEM analyses reveal that the diffusion processes strongly depend and are dominated by the interface dynamics between indium and ZnO. The diffusion exhibited a distinct ledge migration by surface diffusion at [001]-ZnO while continuous migration with slight/no ledges by inner diffusion at [100]-ZnO. The process is explained based on thermodynamic evaluation and growth kinetics. The results present the potential possibilities to completely replace metal-oxide semiconductors with metal nanowires without oxidation and form crystalline metal nanowires with precise epitaxial metal-semiconductor atomic interface. Formation of such single crystalline metal nanowire without oxidation by diffusion to the metal oxide is unique and is crucial in nanodevice performances, which is rather challenging from a manufacturing perspective of 1D nanodevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...