Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(44): 24218-24229, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874900

RESUMO

Exploring efficient strategies to overcome the performance constraints of oxygen evolution reaction (OER) electrocatalysts is vital for electrocatalytic applications such as H2O splitting, CO2 reduction, N2 reduction, etc. Herein, tunable, wide-range strain engineering of spinel oxides, such as NiFe2O4, is proposed to enhance the OER activity. The lattice strain is regulated by interfacial thermal mismatch during the bonding process between thermally expanding NiFe2O4 nanoparticles and the nonexpanding carbon fiber substrate. The tensile lattice strain causes energy bands to flatten near the Fermi level, lowering eg orbital occupancy, effectively increasing the number of electronic states near the Fermi level, and reducing the pseudoenergy gap. Consequently, the energy barrier of the rate-determining step for strained NiFe2O4 is reduced, achieving a low overpotential of 180 mV at 10 mA/cm2. A total water decomposition voltage range of 1.52-1.56 V at 10 mA/cm2 (without iR correction) was achieved in an asymmetric alkaline electrolytic cell with strained NiFe2O4 nanoparticles, and its robust stability was verified with a voltage retention of approximately 99.4% after 100 h. Furthermore, the current work demonstrates the universality of tuning OER performance with other spinel ferrite systems, including cobalt, manganese, and zinc ferrites.

3.
ACS Appl Mater Interfaces ; 13(20): 23803-23810, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33977719

RESUMO

As a next-generation anode material for lithium batteries, Li metal anode suffers from inherent drawbacks such as infinite volume expansion and uneven Li plating/stripping. Herein, we propose a lightweight lithiophilic Prussian blue analogue (PBA) with honeycomb-like structure on Cu foam by self-assembly method to address these issues. The unique honeycomb-like architecture could provide enlarged surface areas and abundant deposition sites for homogenizing Li+ flux during Li plating. Consequently, the elaborate PBA-decorated Cu foam current collector enables long-term (1800 h) reversible plating/stripping behavior and an observably improved Coulombic efficiency (98.3% after 350 cycles). The concept of the direct self-assembly synthesis method on metal foam provides new insights into the design of a lightweight 3-dimensional current collector for Li metal anode.

4.
J Colloid Interface Sci ; 571: 260-266, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32203762

RESUMO

Element doping is a general and effective approach to modify the electrocatalytic performances, but the low intrinsic activity in each electroactive site still limits the further improvements. Herein, we provide an effective strategy by simultaneously introducing P doping and Se vacancies to enhance the intrinsic activities in NiSe2 nanosheet arrays (A-NiSe2|P) through Ar plasma treatment. Owing to the increased active sites and enhanced electrical conductivity, the resulted A-NiSe2|P shows the enhanced hydrogen evolution performances. Theoretical calculations reveal that introduction of Se vacancies plays a significant role in lowering the adsorption free energy of H* in Ni, Se and P sites, leading to promoted intrinsic activities in A-NiSe2|P. Further, A-NiSe2|P as bifunctional electrocatalysts only needs 1.62 V to reach 10 mA cm-2 for overall water splitting. Our study and understanding of A-NiSe2|P may highlight the importance of element doping and vacancies in enhancing the catalytic activities in overall water splitting.

5.
J Colloid Interface Sci ; 564: 37-42, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31901594

RESUMO

Constructing well-defined interfaces is vital to improve the electrocatalytic properties, but the studies on transition-metal-interface electrocatalysts with rich vacancies are rarely reported. Here, rich P vacancies to modulate Ni2P/Cu3P interfaced nanosheets for overall water splitting is demonstrated. We conduct a series of experimental parameters to adjust the nanostructures of Ni2P/Cu3P, and to get insight into the synergistic effects of interfaces and P vacancies on the catalytic activities. Notably, Ni2P/Cu3P with rich P vacancies shows the lowest overpotential requirements of 88 and 262 mV at 10 mA cm-2 towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The good activity is ascribed to abundant electroactive sites, electric field effect at the interfaces and tuning the electron structure by P vacancies. In addition, as bifunctional electrode, Ni2P/Cu3P with rich P vacancies allows for a low water-splitting voltage of 1.60 V at 10 mA cm-2. This work may open up a new route for efficient electrocatalysts through the synergistic effects of interfaces and vacancies.

6.
J Colloid Interface Sci ; 557: 28-33, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31505335

RESUMO

Owing to low-cost and 3d electronic configurations, Co3O4 material is considered as promising candidate for oxygen evolution reaction (OER) electrocatalyst, but the intrinsically low conductivity and limited active site exposure greatly limit the electrocatalytic performances, Herein, we successfully achieve modulation of Co3O4 arrays by Mn and S dual-doping for OER. Results demonstrate that Mn doping modifies the electronic structure of Co center to boost the intrinsic activity of active site in Co3O4, while inducing S in Co3O4 increases the electrical conductivity and provides ample S sites for proton adsorption. In addition, Mn and S dual-doping effectively increase the proportion of Co3+, resulting in facilitating the four-electron transfer and thus higher electrochemical activities. Consequently, the optimal Mn and S dual-doping Co3O4 presents low overpotentials of 330, 407 and 460 mV at 10, 100 and 300 mA cm-2 for OER, as well as a low Tafel slope of 68 mV dec-1 and a good durability after 20 h. Current work highlights a feasible strategy to design electrocatalysts via dual-doping and maximizing the high-valence transition metal ions.

7.
Adv Sci (Weinh) ; 6(14): 1900246, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31380207

RESUMO

Designing and constructing bifunctional electrocatalysts is vital for water splitting. Particularly, the rational interface engineering can effectively modify the active sites and promote the electronic transfer, leading to the improved splitting efficiency. Herein, free-standing and defect-rich heterogeneous MoS2/NiS2 nanosheets for overall water splitting are designed. The abundant heterogeneous interfaces in MoS2/NiS2 can not only provide rich electroactive sites but also facilitate the electron transfer, which further cooperate synergistically toward electrocatalytic reactions. Consequently, the optimal MoS2/NiS2 nanosheets show the enhanced electrocatalytic performances as bifunctional electrocatalysts for overall water splitting. This study may open up a new route for rationally constructing heterogeneous interfaces to maximize their electrochemical performances, which may help to accelerate the development of nonprecious electrocatalysts for overall water splitting.

8.
J Colloid Interface Sci ; 552: 332-336, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132635

RESUMO

Constructing heterointerfaces in heterostructures could effectively enlarge the electroactive sites and enhance the interfacial charge transfer, and thus improve the electrocatalytic performances. Herein, free-standing porous Ni2P-Ni5P4 heterostructured arrays are successfully prepared through in situ phosphating Ni(OH)2 arrays by simply tuning the reaction temperatures. Contributing from the interfacial coupling effects of two phases, large surface areas, highly conductive support of carbon cloth substrates and unique free-standing arrays, Ni2P-Ni5P4 heterostructured arrays show the enhanced kinetics and electrocatalytic performances for the hydrogen evolution reaction, oxygen evolution reaction and overall water splitting. Our research might offer insight into constructing heterophase junctions for efficient overall water splitting.

9.
Nanomicro Lett ; 11(1): 55, 2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34138017

RESUMO

Rational design of efficient bifunctional electrocatalysts is highly imperative but still a challenge for overall water splitting. Herein, we construct novel freestanding Mo-doped NiCoP nanosheet arrays by the hydrothermal and phosphation processes, serving as bifunctional electrocatalysts for overall water splitting. Notably, Mo doping could effectively modulate the electronic structure of NiCoP, leading to the increased electroactive site and improved intrinsic activity of each site. Furthermore, an electrochemical activation strategy is proposed to form Mo-doped (Ni,Co)OOH to fully boost the electrocatalytic activities for oxygen evolution reaction. Benefiting from the unique freestanding structure and Mo doping, Mo-doped NiCoP and (Ni,Co)OOH show the remarkable electrochemical performances, which are competitive among current researches. In addition, an overall water splitting device assembled by both electrodes only requires a cell voltage of 1.61 V to reach a current density of 10 mA cm-2. Therefore, this work opens up new avenues for designing nonprecious bifunctional electrocatalysts by Mo doping and in situ electrochemical activation.

10.
J Colloid Interface Sci ; 536: 456-462, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30384051

RESUMO

Herein, we successfully design and construct core-shell nanostructured NiCo2S4@Ni3S2 directly on Ni foam by a scalable and effective one-step strategy. Further, through simply and accurately controlling the concentration of sulfur source, various nanostructures of NiCo2S4@Ni3S2 arrays in situ on Ni foam are successfully synthesized. The intriguing core-shell structures and integrated electrode configurations endow NiCo2S4@Ni3S2 electrode a large electroactive sites, fast electron transport path and sufficient contacts with electrolyte. Serving as free-standing electrode, as-fabricated NiCo2S4@Ni3S2 arrays exhibit the high specific capacity (4.55 C cm-2 at 5 mA cm-2), good rate performance and good cycling stability. Impressively, current research provides a general, scalable and effective one-step strategy for constructing core-shell nanostructures for energy storage devices.

11.
ACS Appl Mater Interfaces ; 10(45): 38963-38969, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30354046

RESUMO

Carbon nanomaterials have been widely used to enhance the performance of MnO2-based supercapacitors. However, it still remains a challenge to directly fabricate high combining strength, mesostructured and high-performance MnO2/carbon nanotube (CNT)-nanostructured composite electrodes with a little weight percentage of carbon materials. Here, we report a novel mesostructured composite of the CNT-on-MnO2 nanosheet with a high MnO2 percentage, which consists of vertically aligned MnO2 nanosheets with nanopores and in situ formed oriented CNTs on MnO2 nanosheets (tube-on-sheet). The optimized CNTs/MnO2 possesses favorable features, namely, vertically aligned nanosheets to shorted ion diffusion path, a hierarchical porous structure for increased specific surface areas and active sites, and in situ formed CNTs for enhanced conductivity and robust structural stability. It is found that the unique tube-on-sheet CNTs/MnO2 nanocomposites with the high MnO2 percentage (>90 wt %) exhibit a high specific capacity of 1131 F g-1 based on total electrodes and 1229 F g-1 based on MnO2 at a current density of 1 A g-1, high rate capability, and ultrastable cycling life (94.4%@10 000 cycles). This electrode design strategy in this paper demonstrates a new way for high-performance electrodes for supercapacitors with high active material percentage.

12.
Adv Sci (Weinh) ; 5(5): 1700887, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876214

RESUMO

The potential window of aqueous supercapacitors is limited by the theoretical value (≈1.23 V) and is usually lower than ≈1 V, which hinders further improvements for energy density. Here, a simple and scalable method is developed to fabricate unique graphene quantum dot (GQD)/MnO2 heterostructural electrodes to extend the potential window to 0-1.3 V for high-performance aqueous supercapacitor. The GQD/MnO2 heterostructural electrode is fabricated by GQDs in situ formed on the surface of MnO2 nanosheet arrays with good interface bonding by the formation of Mn-O-C bonds. Further, it is interesting to find that the potential window can be extended to 1.3 V by a potential drop in the built-in electric field of the GQD/MnO2 heterostructural region. Additionally, the specific capacitance up to 1170 F g-1 at a scan rate of 5 mV s-1 (1094 F g-1 at 0-1 V) and cycle performance (92.7%@10 000 cycles) between 0 and 1.3 V are observed. A 2.3 V aqueous GQD/MnO2-3//nitrogen-doped graphene ASC is assembled, which exhibits the high energy density of 118 Wh kg-1 at the power density of 923 W kg-1. This work opens new opportunities for developing high-voltage aqueous supercapacitors using in situ formed heterostructures to further increase energy density.

13.
Dalton Trans ; 47(26): 8771-8778, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29916517

RESUMO

NiCo2S4 is a promising electrode material for supercapacitors, due to its rich redox reactions and intrinsically high conductivity. Unfortunately, in most cases, NiCo2S4-based electrodes often suffer from low specific capacitance, low rate capability and fast capacitance fading. Herein, we have rationally designed P-doped NiCo2S4 nanotube arrays to improve the electrochemical performance through a phosphidation reaction. Characterization results demonstrate that the P element is successfully doped into NiCo2S4 nanotube arrays. Electrochemical results demonstrate that P-doped NiCo2S4 nanotube arrays exhibit better electrochemical performance than pristine NiCo2S4, e.g. higher specific capacitance (8.03 F cm-2 at 2 mA cm-2), good cycling stability (87.5% capacitance retention after 5000 cycles), and lower charge transfer resistance. More importantly, we also assemble an asymmetric supercapacitor using P-doped NiCo2S4 nanotube arrays and activated carbon on carbon cloth, which delivers a maximum energy density of 42.1 W h kg-1 at a power density of 750 W kg-1. These results demonstrate that the as-fabricated P-doped NiCo2S4 nanotube arrays on carbon cloth show great potential as a battery-type electrode for high-performance supercapacitors.

14.
Adv Sci (Weinh) ; 5(3): 1700687, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29593971

RESUMO

NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge the accessible surface area with electrolytes, and has the benefits of short ion diffusion path and good charge transport. Further, an interconnected graphene conductive network acts as binder to encapsulate the nanosized NiO particles as core-shell structure, which can promote the charge transport and maintain the structural stability. Consequently, the optimized G@NiO hybrid electrodes exhibit a remarkably enhanced specific capacity up to 1073 C g-1 and excellent cycling stability. This study provides a facial strategy to design and construct high-performance metal oxides for energy storage.

15.
Nanotechnology ; 28(47): 475601, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28930102

RESUMO

In order to confirm the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar+ ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar+ ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar+ ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar+ ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar+ ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar+ ion state. As for vertically oriented few-layer graphene (VFG), Ar+ ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar+ ion bombardment, and these special NCMs are promising in many fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...