Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(50): 19255-19268, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31645432

RESUMO

MAF1 homolog, negative regulator of RNA polymerase III (MAF1) is a key repressor of RNA polymerase (pol) III-dependent transcription and functions as a tumor suppressor. Its expression is frequently down-regulated in primary human hepatocellular carcinomas (HCCs). However, this reduction in MAF1 protein levels does not correlate with its transcript levels, indicating that MAF1 is regulated post-transcriptionally. Here, we demonstrate that MAF1 is a labile protein whose levels are regulated through the ubiquitin-dependent proteasome pathway. We found that MAF1 ubiquitination is enhanced upon mTOR complex 1 (TORC1)-mediated phosphorylation at Ser-75. Moreover, we observed that the E3 ubiquitin ligase cullin 2 (CUL2) critically regulates MAF1 ubiquitination and controls its stability and subsequent RNA pol III-dependent transcription. Analysis of the phenotypic consequences of modulating either CUL2 or MAF1 protein expression revealed changes in actin cytoskeleton reorganization and altered sensitivity to doxorubicin-induced apoptosis. Repression of RNA pol III-dependent transcription by chemical inhibition or knockdown of BRF1 RNA pol III transcription initiation factor subunit (BRF1) enhanced HCC cell sensitivity to doxorubicin, suggesting that MAF1 regulates doxorubicin resistance in HCC by controlling RNA pol III-dependent transcription. Together, our results identify the ubiquitin proteasome pathway and CUL2 as important regulators of MAF1 levels. They suggest that decreases in MAF1 protein underlie chemoresistance in HCC and perhaps other cancers and point to an important role for MAF1 and RNA pol III-mediated transcription in chemosensitivity and apoptosis.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Ubiquitina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo
2.
Oncotarget ; 8(30): 48832-48845, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28415573

RESUMO

The TATA-binding protein (TBP) plays a central role in eukaryotic gene transcription. Given its key function in transcription initiation, TBP was initially thought to be an invariant protein. However, studies showed that TBP expression is upregulated by oncogenic signaling pathways. Furthermore, depending on the cell type, small increases in cellular TBP amounts can induce changes in cellular growth properties towards a transformed phenotype. Here we sought to identify the specific TBP-regulated gene targets that drive its ability to induce tumorigenesis. Using microarray analysis, our results reveal that increases in cellular TBP concentrations produce selective alterations in gene expression that include an enrichment for genes involved in angiogenesis. Accordingly, we find that TBP levels modulate VEGFA expression, the master regulator of angiogenesis. Increases in cellular TBP amounts induce VEGFA expression and secretion to enhance cell migration and tumor vascularization. TBP mediates changes in VEGFA transcription requiring its recruitment at a hypoxia-insensitive proximal TSS, revealing a mechanism for VEGF regulation under non-stress conditions. The results are clinically relevant as TBP expression is significantly increased in both colon adenocarcinomas as well as adenomas relative to normal tissue. Furthermore, TBP expression is positively correlated with VEGFA expression. Collectively, these studies support the idea that increases in TBP expression contribute to enhanced VEGFA transcription early in colorectal cancer development to drive tumorigenesis.


Assuntos
Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína de Ligação a TATA-Box/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Sítios de Ligação , Movimento Celular/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/patologia , Expressão Gênica , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/metabolismo , Proteína de Ligação a TATA-Box/genética , Sítio de Iniciação de Transcrição , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Cancer Res ; 76(7): 1954-64, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26759245

RESUMO

Alterations in chromatin accessibility independent of DNA methylation can affect cancer-related gene expression, but are often overlooked in conventional epigenomic profiling approaches. In this study, we describe a cost-effective and computationally simple assay called AcceSssIble to simultaneously interrogate DNA methylation and chromatin accessibility alterations in primary human clear cell renal cell carcinomas (ccRCC). Our study revealed significant perturbations to the ccRCC epigenome and identified gene expression changes that were specifically attributed to the chromatin accessibility status whether or not DNA methylation was involved. Compared with commonly mutated genes in ccRCC, such as the von Hippel-Lindau (VHL) tumor suppressor, the genes identified by AcceSssIble comprised distinct pathways and more frequently underwent epigenetic changes, suggesting that genetic and epigenetic alterations could be independent events in ccRCC. Specifically, we found unique DNA methylation-independent promoter accessibility alterations in pathways mimicking VHL deficiency. Overall, this study provides a novel approach for identifying new epigenetic-based therapeutic targets, previously undetectable by DNA methylation studies alone, that may complement current genetic-based treatment strategies. Cancer Res; 76(7); 1954-64. ©2016 AACR.


Assuntos
Carcinoma de Células Renais/genética , Metilação de DNA/genética , Epigenômica/métodos , Carcinoma de Células Renais/patologia , Expressão Gênica , Humanos
4.
Cell Rep ; 2(5): 1061-7, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23177621

RESUMO

A key feature of RNA polymerase II (Pol II) preinitiation complexes (PICs) is their ability to coordinate transcription initiation with chromatin modification and remodeling. To understand how this coordination is achieved, we employed extensive proteomic and mechanistic analyses to study the composition and assembly of PICs in HeLa cell and mouse embryonic stem cell (ESC) nuclear extracts. Strikingly, most of the machinery that is necessary for transcription initiation on chromatin is part of the PIC. The PIC is nearly identical between ESCs and HeLa cells and contains two major coactivator complexes: Mediator and SAGA. Genome-wide analysis of Mediator reveals that it has a close correlation with Pol II, TATA-binding protein, and messenger RNA levels and thus may play a major role in PIC assembly. Moreover, Mediator coordinates assembly of the Pol II initiation factors and chromatin machinery into a PIC in vitro, whereas SAGA acts after PIC assembly to allow transcription on chromatin.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Transativadores/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células HeLa , Humanos , Camundongos , Regiões Promotoras Genéticas , RNA Polimerase II/química , RNA Mensageiro/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica
5.
Curr Protoc Mol Biol ; Chapter 12: Unit 12.14., 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22237857

RESUMO

In the study of gene regulation, it is often necessary to employ functional assays that investigate the action or mechanism of specific promoters or enhancer-binding factors and their role in transcription by RNA polymerase II. Although many assays measure the transcription of a gene under the control of an endogenous or model activator in vivo, it is often useful to recreate transcription in vitro in order to study specific regulatory mechanisms. In this unit, protocols are presented that will allow the investigator to perform in vitro transcription using preinitiation complexes assembled from cellular extracts on either naked DNA or chromatin templates.


Assuntos
DNA/química , DNA/genética , Técnicas Genéticas , Transcrição Gênica , Núcleo Celular/química , Núcleo Celular/genética , Primers do DNA/genética , Humanos , RNA/genética , Moldes Genéticos
6.
Genes Dev ; 25(20): 2198-209, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21979373

RESUMO

Murine Chd1 (chromodomain helicase DNA-binding protein 1), a chromodomain-containing chromatin remodeling protein, is necessary for embryonic stem (ES) cell pluripotency. Chd1 binds to nucleosomes trimethylated at histone 3 Lys 4 (H3K4me3) near the beginning of active genes but not to bivalent domains also containing H3K27me3. To address the mechanism of this specificity, we reproduced H3K4me3- and CHD1-stimulated gene activation in HeLa extracts. Multidimensional protein identification technology (MuDPIT) and immunoblot analyses of purified preinitiation complexes (PICs) revealed the recruitment of CHD1 to naive chromatin but enhancement on H3K4me3 chromatin. Studies in depleted extracts showed that the Mediator coactivator complex, which controls PIC assembly, is also necessary for CHD1 recruitment. MuDPIT analyses of CHD1-associated proteins support the recruitment data and reveal numerous components of the PIC, including Mediator. In vivo, CHD1 and Mediator are recruited to an inducible gene, and genome-wide binding of the two proteins correlates well with active gene transcription in mouse ES cells. Finally, coimmunoprecipitation of CHD1 and Mediator from cell extracts can be ablated by shRNA knockdown of a specific Mediator subunit. Our data support a model in which the Mediator coordinates PIC assembly along with the recruitment of CHD1. The combined action of the PIC and H3K4me3 provides specificity in targeting CHD1 to active genes.


Assuntos
DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Mediador/metabolismo , Animais , Regulação da Expressão Gênica , Células HeLa , Histonas/metabolismo , Humanos , Imunoprecipitação , Complexo Mediador/genética , Camundongos , Ligação Proteica , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...