Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(36): 41022-41036, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044767

RESUMO

Because of their high ionic conductivity, utilizing gel polymer electrolytes (GPEs) is thought to be an effective way to accomplish high-energy-density batteries. Nevertheless, most GPEs have poor adaptability to Ni-rich cathodes to alleviate the problem of inevitable rapid capacity decay during cycling. Therefore, to match LiNi0.8Co0.1Mn0.1O2 (NCM811), we applied pentaerythritol tetraacrylate (PETEA) monomers to polymerize in situ in a polyacrylonitrile (PAN) membrane to obtain GPEs (PETEA-TCGG-PAN). The impedance variations and key groups during the in situ polymerization of PETEA-TCGG-PAN are investigated in detail. PETEA-TCGG-PAN with a high lithium-ion transference number (0.77) exhibits an electrochemical decomposition voltage of 5.15 V. Noticeably, the NCM811|PETEA-TCGG-PAN|Li battery can cycle at 2C for 120 cycles with a capacity retention rate of 89%. Even at 6C, the discharge specific capacity is able to reach 101.47 mAh g-1. The combination of LiF and Li2CO3 at the CEI interface is the reason for the improved rate performance. Moreover, when commercialized LFP is used as the cathode, the battery can also cycle stably for 150 cycles at 0.5C. PETEA and PAN can together foster the transportation of Li+ with the construction of a fast ion transport channel, making a contribution to stable charge-discharge of the above batteries. This study provides an innovative design philosophy for designing in situ GPEs in high-energy-density lithium metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...