Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 141(8): 2523-33, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27000483

RESUMO

Over the last decade, cluster ion beams have displayed their capability to analyze organic materials and biological specimens. Compared with atomic ion beams, cluster ion beams non-linearly enhance the sputter yield, suppress damage accumulation and generate high mass fragments during sputtering. These properties allow successful Secondary Ion Mass Spectroscopy (SIMS) analysis of soft materials beyond the static limit. Because the intensity of high mass molecular ions is intrinsically low, enhancing the intensity of these secondary ions while preserving the sample in its original state is the key to highly sensitive molecular depth profiles. In this work, bulk poly(ethylene terephthalate) (PET) was used as a model material and analyzed using Time-of-Flight SIMS (ToF-SIMS) with a pulsed Bi3(2+) primary ion. The optimized hardware of a 10 kV Ar2500(+) Gas Cluster Ion Beam (GCIB) with a low kinetic energy (200-500 V) oxygen ion (O2(+)) as a cosputter beam was employed for generating depth profiles and for examining the effect of beam parameters. The results were then quantitatively analyzed using an established erosion model. It was found that the ion intensity of the PET monomer ([M + H](+)) and its large molecular fragment ([M - C2H4O + H](+)) steadily declined during single GCIB sputtering, with distortion of the distribution information. However, under an optimized GCIB-O2(+) cosputter, the secondary ion intensity quickly reached a steady state and retained >95% intensity with respect to the pristine surface, although the damage cross-section was larger than that of single GCIB sputtering. This improvement was due to the oxidation of molecules and the formation of -OH groups that serve as proton donors to particles emitted from the surface. As a result, the ionization yield was enhanced and damage to the chemical structure was masked. Although O2(+) is known to alter the chemical structure and cause damage accumulation, the concurrently used GCIB could sufficiently remove the surface layer and allow the damage to be masked by the enhanced ionization yield when the ion-solid interaction volume was kept shallow with a low O2(+) energy. This low O2(+) energy (200 V) cosputtering also produced a smoother surface than a single GCIB. Because the oxidized species were produced by O2(+) and removed by GCIB simultaneously, a sufficiently high O2(+) current density was required to produce adequate enhancements. Therefore, it was found that 10 kV with 2 × 10(-6) A per cm(2) Ar2500(+) and 200 V with 3.2 × 10(-4) A per cm(2) O2(+) produced the best profile.

2.
Langmuir ; 30(34): 10328-35, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25111830

RESUMO

Extracellular matrix (ECM) proteins, such as fibronectin, laminin, and collagen IV, play important roles in many cellular behaviors, including cell adhesion and spreading. Understanding their adsorption behavior on surfaces with different natures is helpful for studying the cellular responses to environments. By tailoring the chemical composition in binary acidic (anionic) and basic (cationic) functionalized self-assembled monolayer (SAM)-modified gold substrates, variable surface potentials can be generated. To examine how surface potential affects the interaction between ECM proteins and substrates, a quartz crystal microbalance with dissipation detection (QCM-D) was used. To study the interaction under physiological conditions, the ionic strength and pH were controlled using phosphate-buffered saline at 37 °C, and the ζ potentials of the SAM-modified Au and protein were determined using an electrokinetic analyzer and phase analysis light scattering, respectively. During adsorption processes, the shifts in resonant frequency (f) and energy dissipation (D) were acquired simultaneously, and the weight change was calculated using the Kelvin-Voigt model. The results reveal that slightly charged protein can be adsorbed on a highly charged SAM, even where both surfaces are negatively charged. This behavior is attributed to the highly charged SAM, which polarizes the protein microscopically, and the Debye interaction, as well as other short-range interactions such as steric force, hydrogen bonding, direct bonding, charged domains within the protein structure, etc., that allow adsorption, although the macroscopic electrostatic interaction discourages adsorption. For surfaces with a moderate potential, proteins are not significantly polarized by the surface, and the interaction can be predicted through simple electrostatic attraction. Furthermore, surface-induced self-assembly of protein molecules also affects the adsorbed structures and kinetics. The adsorbed layer properties, such as rigidity and packing behaviors, were further investigated using the D-f plot and phase detection microscopy (PDM) imaging.


Assuntos
Proteínas da Matriz Extracelular/química , Adsorção , Propriedades de Superfície
3.
Anal Chem ; 85(7): 3781-8, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23461551

RESUMO

In the past decade, the C60-based ion gun has been widely utilized in the secondary ion mass spectrometry (SIMS) analysis of organic and biological materials because molecular secondary-ions of high masses could be generated by cluster-ion bombardment. This technique furthers the development of SIMS in bioanalysis by eliminating the need for either heteroatom or isotope labeling. However, the intensity of high-mass parent ions was usually low and limited the sensitivity of the analysis, thus requiring an enhancement in the intensity of these molecular ions to widen the application of SIMS. In this work, the aim was to preserve samples in their original state while using a low kinetic energy O2(+) beam cosputtered with high-energy C60(+) to enhance the ion intensity through the depth-profile. Although O2(+) is generally used to enhance ion intensities in positive SIMS, it is known to alter the chemical structure and primarily provide elemental information; hence, it is not suitable for profiling organic and biological specimens. Nevertheless, owing to its high sputtering yield, cluster C60(+) ion removes and masks the structural damage, hence O2(+) may be used to enhance the ion intensity. The characteristic molecular ions of polyethylene terephthalate (PET), trehalose, and a peptide (papain inhibitor) are enhanced by 35×, 12×, and 3.5× with the use of the auxiliary O2(+) beam, respectively. This significant enhancement in ionization yield is attributed to the oxidation of molecules and formation of a hydroxyl group that serves as a proton donator. In addition to enhancing molecular SIMS signals, C60(+)-O2(+) cosputtering could also alleviate several problems, including sputtering rate decay, carbon deposition, and surface roughening, that are associated with C60(+) bombardment and produced better depth profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...