Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Formos Med Assoc ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38514373

RESUMO

BACKGROUND/PURPOSE: We evaluated the utility of combining quantitative pulmonary vasculature measures with clinical factors for predicting pulmonary hemorrhage after computed tomography (CT)-guided lung biopsy. METHODS: Patients who underwent CT-guided lung biopsy were retrospectively included in this study. Clinical and radiographic vasculature variables were evaluated as predictors of pulmonary hemorrhage. The radiographic pulmonary vascular analysis included vessel count, density, diameter, and area, and also blood volume in small vessels with a cross-sectional area ≤5 mm2 (BV5) and total blood vessel volume (TBV) in the lungs. Univariate and multivariate logistic regressions were used to identify the independent risk factors of higher-grade pulmonary hemorrhage and establish the prediction model presented as a nomogram. RESULTS: The study included 126 patients; discovery cohort n = 103, and validation cohort n = 23. All pulmonary hemorrhage, higher-grade (grade ≥2) pulmonary hemorrhage, and hemoptysis occurred in 42.9%, 15.9%, and 3.2% of patients who underwent CT-guided lung biopsies. In the discovery cohort, patients with larger lesion depth (p = 0.013), higher vessel density (p = 0.033), and higher BV5 (p = 0.039) were more likely to experience higher-grade hemorrhage. The nomogram prediction model for higher-grade hemorrhage built by the discovery cohort showed similar performance in the validation cohort. CONCLUSIONS: Higher-grade pulmonary hemorrhage may occur after CT-guided lung biopsy. Lesion depth, vessel density, and BV5 are independent risk factors for higher-grade pulmonary hemorrhage. Nomograms integrating clinical parameters and radiographic pulmonary vasculature measures offer enhanced capability for assessing hemorrhage risk following CT-guided lung biopsy, thereby facilitating improved patient clinical care.

2.
J Clin Med ; 10(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34362147

RESUMO

Hemolytic anemia (HA) renders erythropoietic stress on the bone marrow and has been linked to osteoporosis. In this nationwide retrospective cohort study, we examined this correlation by utilizing the Taiwan National Health Insurance Research Database (NHIRD). We identified two cohorts, matching population with and without HA in a 1:4 ratio. A total of 2242 HA patients and 8968 non-HA patients were enrolled. Patients with HA had a significantly higher cumulative incidence (log-rank test p = 0.0073), higher incidence density (5.11 vs. 3.76 per 1000 persons-years), and a 1.31-fold risk of developing osteoporosis than non-HA patients (aHR = 1.31, 95% C.I. 1.04-1.63, p = 0.01). After adjusting for age, sex, and comorbidities, patients with factors including female (aHR = 2.57, 95% C.I. 2.05-3.22, p < 0.001), age > 65 (aHR = 9.25, 95% C.I. 7.46-11.50, p < 0.001), diagnosis of cholelithiasis (aHR = 1.76, 95% C.I. 1.20-2.58, p = 0.003) and peptic ulcer disease (aHR = 1.87, 95% C.I. 1.52-2.29, p < 0.001) had significantly higher risk of osteoporosis. We propose that this correlation may be related to increased hematopoietic stress, increased consumption of nitric oxide (NO) by hemolysis, and the inhibitory effects of iron supplements on osteogenesis through the receptor activator of nuclear factor κB ligand (RANKL)/Osteoprotegerin pathway and the Runt-related transcription factor 2 (RUNX2) factor. Our findings suggest that patients with hemolytic anemia are at a higher risk of developing osteoporosis, and it would be in the patient's best interest for physicians to be aware of this potential complication and offer preventative measures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...