Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2402575, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860359

RESUMO

Effective and rapid heat transfer is critical to improving electronic components' performance and operational stability, particularly for highly integrated and miniaturized devices in complex scenarios. However, current thermal manipulation approaches, including the recent advancement in thermal metamaterials, cannot realize fast and unidirectional heat flow control. In addition, any defects in thermal conductive materials cause a significant decrease in thermal conductivity, severely degrading heat transfer performance. Here, the utilization of silicon-based valley photonic crystals (VPCs) is proposed and numerically demonstrated to facilitate ultrafast, unidirectional heat transfer through thermal radiation on a microscale. Utilizing the infrared wavelength region, the approach achieves a significant thermal rectification effect, ensuring continuous heat flow along designed paths with high transmission efficiency. Remarkably, the process is unaffected by temperature gradients due to the unidirectional property, maintaining transmission directionality. Furthermore, the VPCs' inherent robustness affords defect-immune heat transfer, overcoming the limitations of traditional conduction methods that inevitably cause device heating, performance degradation, and energy waste. The design is fully CMOS compatible, thus will find broad applications, particularly for integrated optoelectronic devices.

2.
Small ; : e2304530, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415903

RESUMO

Elevating the working temperature delivers a simple and universal approach to enhance the energy storage performances of supercapacitors owing to the fundamental improvements in ion transportation kinetics. Among all heating methods, introducing green and sustainable photothermal heating on supercapacitors (SCs) is highly desired yet remains an open challenge, especially for developing an efficient and universal photothermal heating strategy that can be generally applied to arbitrary SC devices. Flash-enabled graphene (FG) absorbers are produced through a simple and facile flash reduction process, which can be coated on the surface of any SC devices to lift their working temperature via a photothermal effect, thus, improving their overall performance, including both power and energy densities. With the systematic temperature-dependent investigation and the in-depth numerical simulation of SC performances, an evident enhancement in capacitance up to 65% can be achieved in photothermally enhanced SC coin cell devices with FG photo-absorbers. This simple, practical, and universal enhancement strategy provides a novel insight into boosting SC performances without bringing complexity in electrode fabrication/optimization. Also, it sheds light on the highly efficient utilization of green and renewable photothermal energies for broad application scenarios, especially for energy storage devices.

3.
ACS Appl Mater Interfaces ; 15(30): 36706-36715, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466342

RESUMO

Vertical gradient band-gap heterostructures of two-dimensional (2D) layered perovskites have attracted considerable research interest due to their superior optoelectronic properties and demonstrated potential for use in optical devices. However, its fabrication has been challenging. In this investigation, 2D Ruddlesden-Popper mixed halide perovskite single crystals with a vertical gradient band gap were synthesized by using a solid-state halide diffusion process. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements after diffusion confirm that the crystalline and morphology remain intact. The transmittance and photoluminescence (PL) spectra show the formation of a vertical gradient band gap that is ascribed to gradient halide distribution through halide intermixing. The mixed halide crystal exhibits high stability with completely suppressed phase segregation in the time-dependent PL measurement. The time-resolved photoluminescence (TRPL) spectra prove that the mixed halide sample has an enhanced carrier transport due to the Förster resonance energy transfer (FRET) effect. Besides, the halide diffusion behavior is found to be different from the previously proposed "layer-by-layer" diffusion model in exfoliated crystals. The gradient band-gap structure is critical for various applications in which vertical carrier transport is demanded.

4.
Nat Commun ; 13(1): 5553, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36138000

RESUMO

Cooling in buildings is vital to human well-being but inevitability consumes significant energy, adding pressure on achieving carbon neutrality. Thermally superinsulating aerogels are promising to isolate the heat for more energy-efficient cooling. However, most aerogels tend to absorb the sunlight for unwanted solar heat gain, and it is challenging to scale up the aerogel fabrication while maintaining consistent properties. Herein, we develop a thermally insulating, solar-reflective anisotropic cooling aerogel panel containing in-plane aligned pores with engineered pore walls using boron nitride nanosheets by an additive freeze-casting technique. The additive freeze-casting offers highly controllable and cumulative freezing dynamics for fabricating decimeter-scale aerogel panels with consistent in-plane pore alignments. The unique anisotropic thermo-optical properties of the nanosheets combined with in-plane pore channels enable the anisotropic cooling aerogel to deliver an ultralow out-of-plane thermal conductivity of 16.9 mW m-1 K-1 and a high solar reflectance of 97%. The excellent dual functionalities allow the anisotropic cooling aerogel to minimize both parasitic and solar heat gains when used as cooling panels under direct sunlight, achieving an up to 7 °C lower interior temperature than commercial silica aerogels. This work offers a new paradigm for the bottom-up fabrication of scalable anisotropic aerogels towards practical energy-efficient cooling applications.

5.
Chem Rev ; 122(19): 15204-15355, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-35749269

RESUMO

The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.


Assuntos
Óptica e Fotônica , Humanos
6.
Nano Lett ; 22(14): 6026-6033, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35639615

RESUMO

Thermochromic materials have been widely applied in energy-efficient buildings, aerospace, textiles, and sensors. Conventional thermochromic materials rely on material phase or structure changes upon thermal stimuli, which only enable a few colors, greatly limiting their applicability. Here, we propose and demonstrate the concept of dynamically tunable thermochromic graphene metamaterials (TGMs), which can achieve continuous color tunability (380-800 nm) with fast (<100 ms) response times. The TGMs are composed of an ultrathin graphene oxide (GO) film on a flexible metal substrate. We demonstrated that external thermal energy can dynamically adjust the water contents in the GO film to manipulate the color of TGMs. An impressive thermochromic sensitivity of 1.11 nm/°C covering a large percentage of the color space has been achieved. Prototype applications for a cup and smartphone have been demonstrated. The reversible TGMs promise great potential for practical applications of temperature sensing in optoelectronic devices, environmental monitoring, and dynamic color modulation.

7.
J Am Chem Soc ; 143(39): 16113-16127, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34582167

RESUMO

Integrating multifunctional nanostructures capable of radiotherapy and photothermal ablation is an emerging alternative in killing cancer cells. In this work, we report a novel plasmonic heterostructure formed by decorating AuPt nanoparticles (NPs) onto the surfaces of CuS nanosheets (AuPt@CuS NSs) as a highly effective nanotheranostic toward dual-modal photoacoustic/computed tomography imaging and enhanced synergistic radiophotothermal therapy. These heterostructures can confer higher photothermal conversion efficiency via the local electromagnetic enhancement as well as a greater radiation dose deposition in the form of glutathione depletion and reactive oxygen species generation. As a result, the depth of tissue penetration is improved, and hypoxia of the tumor microenvironment is alleviated. With synergistic enhancement in the efficacy of photothermal ablation and radiotherapy, the tumor can be eliminated without later recurrence. It is believed that these multifunctional heterostructures will play a vital role in future oncotherapy with the enhanced synergistic effects of radiotherapy and photothermal ablation under the guided imaging of a potential dual-modality system.


Assuntos
Cobre/farmacologia , Compostos de Ouro/farmacologia , Terapia Fototérmica , Compostos de Platina/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Animais , Linhagem Celular Tumoral , Cobre/química , Feminino , Compostos de Ouro/química , Neoplasias Mamárias Animais , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Compostos de Platina/química , Compostos Radiofarmacêuticos/química , Distribuição Aleatória
8.
ACS Nano ; 15(5): 8930-8939, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33988983

RESUMO

Structural coloration providing vibrant and tailored colors enables broad applications. Existing strategies of structural coloration either use resonances or diffraction induced by arrayed nanostructures with element sizes at a wavelength scale or are based on interference from vacuum-deposited large-area thin films. It is extremely challenging to achieve full color pixels with diffraction-limited resolution without sophisticated multiple-step nanostructure fabrication or externally applied field control. Realization of dynamically switchable full color displays with diffraction-limited resolution is even harder. This work demonstrates a structural color strategy with developed anisotropic graphene metapixels. The anisotropic optical property is given by the intrinsic birefringence of the layered structure of graphene metamaterials, and each metapixel is spatially encoded by direct laser printing with diffraction-limited resolution (250 nm). The colors can be dynamically and instantly switched by controlling the scattering of the light source to excite different modes based on the strong anisotropic optical properties of the graphene metapixels. The low-cost large-scale fabrication method allows experimental demonstration of a large-area (4 in.) flexible full color optical switchable display. Such a simple, effective and flexible method promises broad practical applications in color display and color image sensing related fields.

9.
Nat Commun ; 11(1): 1389, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170054

RESUMO

An ideal solar-thermal absorber requires efficient selective absorption with a tunable bandwidth, excellent thermal conductivity and stability, and a simple structure for effective solar thermal energy conversion. Despite various solar absorbers having been demonstrated, these conditions are challenging to achieve simultaneously using conventional materials and structures. Here, we propose and demonstrate three-dimensional structured graphene metamaterial (SGM) that takes advantages of wavelength selectivity from metallic trench-like structures and broadband dispersionless nature and excellent thermal conductivity from the ultrathin graphene metamaterial film. The SGM absorbers exhibit superior solar selective and omnidirectional absorption, flexible tunability of wavelength selective absorption, excellent photothermal performance, and high thermal stability. Impressive solar-to-thermal conversion efficiency of 90.1% and solar-to-vapor efficiency of 96.2% have been achieved. These superior properties of the SGM absorber suggest it has a great potential for practical applications of solar thermal energy harvesting and manipulation.

10.
Nanoscale ; 11(43): 20968-20976, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31660559

RESUMO

3D structures assembled from multiple components have attracted increasing research interest based on their enriched functionalities and broadened applications. Here, we report a bottom-up strategy to fabricate 3D halos through the co-assembly of Fe3O4 and Au nanoparticles (NPs). Typically, Fe3O4 NPs assemble into a 3D core (size around 500 nm) with simultaneous growth of Au NPs on the 3D surface during the assembly process. As a general approach, a variety of 3D halos were fabricated from the co-assembly of Fe3O4 and Au NPs of different sizes and shapes. To demonstrate the advantages of these 3D halo structures, their catalytic activity to mimic natural enzymes was investigated. Compared with Fe3O4 NP building blocks, enhanced catalytic efficiency was achieved by the 3D halos. In addition, the optical behavior of the 3D halos was simulated using a three-dimensional finite-difference time-domain (3D-FDTD) method. As shown in the results, the 3D halos attached to 90 nm Au NPs could absorb more incident light owing to high electric field intensities, making these structures promising for applications in energy harvesting and detection-related fields.

11.
J Am Chem Soc ; 141(4): 1725-1734, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30604974

RESUMO

Two-dimensional (2D) nanomaterials are attracting increasing research interest because of their unique properties and promising applications. Here, we report a facile method to manipulate the assembly of nanoparticles (NPs) to fabricate free-standing 2D quasi-nanosheets. The as-generated 2D products are composed of few-layer NPs; that is, their thicknesses are only tens of nanometers but lateral dimensions could be up to several micrometers. Therefore, the novel structure was denoted as 2D "quasi-nanosheets (QNS)". Specifically, several types of building blocks could be assembled into 2D unary, binary, ternary, and even quaternary QNS by a universal procedure. The entire assembly process is carried out in solution and mediated simply by tuning the concentration of ligands surrounding the NPs. In contrast to traditional assembly techniques, even without any substrate or template, these QNS showed exceptionally high stability. They can remain intact for several days without any disassembly regardless of the solvent environment (e.g., water, ethanol, methanol, and hexane). In general, our method has effectively tackled several limitations associated with traditional assembly techniques and allows more freedom in manipulating assembly of NPs, which may hold great potential for future fabrication of 2D devices with rich functionalities.


Assuntos
Nanopartículas/química , Nanotecnologia , Modelos Moleculares , Conformação Molecular
12.
ACS Appl Mater Interfaces ; 11(3): 3150-3159, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30624888

RESUMO

Although the use of plasmonic nanostructures for photodetection below the band gap energy of the semiconductor has been intensively investigated recently, efficiencies of such hot electron-based devices have, unfortunately, remained low because of the inevitable energy loss of the hot electrons as they move and transfer in active antennas based on metallic nanostructures. In this work, we demonstrate the concept of high-refractive-index material-embedded trench-like (ETL) active antennas that could be used to achieve almost 100% absorbance within the ultrashallow region (approximately 10 nm) beneath the metal-semiconductor interface, which is a much smaller distance compared with the hot electrons' mean free path in the noble metal layer. Taking advantage of these ETL-based active antennas, we obtained photoresponsivities under zero bias at wavelengths of 1310 and 1550 nm of 5854 and 693 nA mW-1, respectively-values higher than most those previously reported for active antenna-based silicon (Si) photodetectors that operate at optical telecommunication wavelengths. Furthermore, the ETL antenna strategy allowed us to preserve an omnidirectional and broadband photoresponse, with a superior degree of detection linearity of R2 = 0.98889 under the light of low power density (down to 11.1 µW cm-2). The photoresponses of the ETL antenna-based device varied by less than 10% upon changing the incident angle from normal incidence to 60°. Because these ETL-based devices provide high responsivity and omnidirectional detection over a broad bandwidth, they show promising potentials for use in hot electron-based optoelectronics for many applications (e.g., Si photonics, energy harvesting, photocatalysis, and sensing devices).

13.
Nanoscale ; 8(38): 16936-16946, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27714149

RESUMO

A simple structure, efficient color splitting, sufficient output of electrical signals, and low power consumption are the important characteristics of contemporary devices for color sensing. In this study, we developed filter-free, junctionless structures that exhibited a superior photo-thermo-electrical response under a low bias voltage and a short response time in milliseconds. Although our compact sensor had a simple single-layer trench-like aluminum (Al) structure, it could perform multiple functions, including light harvesting, color-selective absorption, photo-thermo-electrical transformation, and the ability to collect photoinduced differences in electrical signals. This device exploited near-field surface plasmon resonance and cavity effects to enhance the intensity of the electric field and the color-selective absorption, ultimately resulting in significant current signals in its structured Al film. This strategy significantly simplifies not only the components of the color sensor but also its fabrication; for example, red, green, and blue color detection devices could be prepared simultaneously through a single lithography, etching, and deposition step. With its ability to provide functional filter-free, junctionless structures, this strategy has great potential for the production of devices that operate on different kinds of substrates, thereby bridging various applications of color sensing technologies.

14.
ACS Appl Mater Interfaces ; 8(10): 6718-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26925762

RESUMO

High pixel density, efficient color splitting, a compact structure, superior quantum efficiency, and low power consumption are all important features for contemporary color-image sensors. In this study, we developed a surface plasmonics-based color-image sensor displaying a high photoelectric response, a microlens-free structure, and a zero-bias working voltage. Our compact sensor comprised only (i) a multifunctional electrode based on a single-layer structured aluminum (Al) film and (ii) an underlying silicon (Si) substrate. This approach significantly simplifies the device structure and fabrication processes; for example, the red, green, and blue color pixels can be prepared simultaneously in a single lithography step. Moreover, such Schottky-based plasmonic electrodes perform multiple functions, including color splitting, optical-to-electrical signal conversion, and photogenerated carrier collection for color-image detection. Our multifunctional, electrode-based device could also avoid the interference phenomenon that degrades the color-splitting spectra found in conventional color-image sensors. Furthermore, the device took advantage of the near-field surface plasmonic effect around the Al-Si junction to enhance the optical absorption of Si, resulting in a significant photoelectric current output even under low-light surroundings and zero bias voltage. These plasmonic Schottky-based color-image devices could convert a photocurrent directly into a photovoltage and provided sufficient voltage output for color-image detection even under a light intensity of only several femtowatts per square micrometer. Unlike conventional color image devices, using voltage as the output signal decreases the area of the periphery read-out circuit because it does not require a current-to-voltage conversion capacitor or its related circuit. Therefore, this strategy has great potential for direct integration with complementary metal-oxide-semiconductor (CMOS)-compatible circuit design, increasing the pixel density of imaging sensors developed using mature Si-based technology.

15.
Nanoscale ; 8(6): 3647-59, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26809318

RESUMO

In this study, a simple configuration, based on high-index dielectric nanoparticles (NPs) and plasmonic nanostructures, is employed for the nanofocusing of submicron-short-range surface plasmon polaritons (SPPs). The excited SPPs are locally bound and focused at the interface between the dielectric NPs and the underlying metallic nanostructures, thereby greatly enhancing the local electromagnetic field. Taking advantage of the surface properties of the dielectric NPs, this system performs various functions. For example, the nanofocusing of submicron-short-range SPPs is used to enhance the Raman signals of gas molecules adsorbed on the dielectric NPs. In addition, the presence of the local strong electromagnetic field accelerates the rates of interfacial reactions on the surfaces of the dielectric NPs. Therefore, the proposed nanofocusing configuration can both promote and probe interfacial reactions simultaneously. Herein, the promotion and probing of the desorption of EtOH vapor are described, as well as the photodegradation of methylene blue. Moreover, the nanofocusing of SPPs is demonstrated on an aluminum surface in both the visible and UV regimes, a process that has not been achieved using conventional tapered waveguide nanofocusing structures. Therefore, the nanofocusing of submicron-short-range SPPs by dielectric NPs on plasmonic nanostructures is not limited to low-loss noble metals. Accordingly, this system has potential for use in light management and on-chip green devices and sensors.

16.
ACS Nano ; 9(12): 12045-59, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26552041

RESUMO

This paper describes a systematic investigation of the phenomenon of white-light-induced heating in silk fibroin films embedded with gold nanoparticles (Au NPs). The Au NPs functioned to develop an ultrahigh broadband absorber, allowing white light to be used as a source for photothermal generation. With an increase of the Au content in the composite films, the absorbance was enhanced significantly around the localized surface plasmon resonance (LSPR) wavelength, while non-LSPR wavelengths were also increased dramatically. The greater amount of absorbed light increased the rate of photoheating. The optimized composite film exhibited ultrahigh absorbances of approximately 95% over the spectral range from 350 to 750 nm, with moderate absorbances (>60%) at longer wavelengths (750-1000 nm). As a result, the composite film absorbed almost all of the incident light and, accordingly, converted this optical energy to local heat. Therefore, significant temperature increases (ca. 100 °C) were readily obtained when we irradiated the composite film under a light-emitting diode or halogen lamp. Moreover, such composite films displayed linear light-to-heat responses with respect to the light intensity, as well as great photothermal stability. A broadband absorptive film coated on a simple Al/Si Schottky diode displayed a linear, significant, stable photo-thermo-electronic effect in response to varying the light intensity.


Assuntos
Bombyx/química , Fibroínas/química , Ouro/química , Nanocompostos/química , Animais , Temperatura Alta , Luz , Ressonância de Plasmônio de Superfície
17.
Anal Chem ; 87(12): 6017-24, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26043267

RESUMO

In this Article, we present a facile approach for the preparation of ecofriendly substrates, based on common rose petals, for ultrasensitive surface-enhanced Raman scattering (SERS). The hydrophobic concentrating effect of the rose petals allows us to concentrate metal nanoparticle (NP) aggregates and analytes onto their surfaces. From a systematic investigation of the SERS performance when using upper and lower epidermises as substrates, we find that the lower epidermis, with its quasi-three-dimensional (quasi-3D) nanofold structure, is the superior biotemplate for SERS applications. The metal NPs and analytes are both closely packed in the quasi-3D structure of the lower epidermis, thereby enhancing the Raman signals dramatically within the depth of focus (DOF) of the Raman optical system. We have also found the effect of the pigment of the petals on the SERS performance. With the novel petal-based substrate, the SERS measurements reveal a detection limit for rhodamine 6G below the femtomolar regime (10(-15) M), with high reproducibility. Moreover, when we employ an upside-down drying process, the unique effect of the Wenzal state of the hydrophobic petal surface further concentrate the analytes and enhanced the SERS signals. Rose petals are green, natural materials that appear to have great potential for use in biosensors and biophotonics.


Assuntos
Nanopartículas Metálicas/análise , Rodaminas/análise , Rosa/química , Prata/análise , Limite de Detecção , Tamanho da Partícula , Análise Espectral Raman , Propriedades de Superfície
18.
ACS Nano ; 9(5): 5093-103, 2015 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-25927392

RESUMO

In this study, we combine graphene with gold oxide (AuOx), a transparent and high-work-function electrode material, to achieve a high-efficient, low-bias, large-area, flexible, transparent, broadband, and bifacial-operable photodetector. The photodetector operates through hot electrons being generated in the graphene and charge separation occurring at the AuOx-graphene heterojunction. The large-area graphene covering the AuOx electrode efficiently prevented reduction of its surface; it also acted as a square-centimeter-scale active area for light harvesting and photodetection. Our graphene/AuOx photodetector displays high responsivity under low-intensity light illumination, demonstrating picowatt sensitivity in the ultraviolet regime and nanowatt sensitivity in the infrared regime for optical telecommunication. In addition, this photodetector not only exhibited broadband (from UV to IR) high responsivity-3300 A W(-1) at 310 nm (UV), 58 A W(-1) at 500 nm (visible), and 9 A W(-1) at 1550 nm (IR)-but also required only a low applied bias (0.1 V). The hot-carrier-assisted photoresponse was excellent, especially in the short-wavelength regime. In addition, the graphene/AuOx photodetector exhibited great flexibility and stability. Moreover, such vertical heterojunction-based graphene/AuOx photodetectors should be compatible with other transparent optoelectronic devices, suggesting applications in flexible and wearable optoelectronic technologies.

19.
Nanoscale ; 7(9): 3985-96, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25567353

RESUMO

We have used a direct imprint-in-metal method that is cheap and rapid to prepare incident angle-tuned, broadband, ultrahigh-sensitivity plasmonic antennas from nanoparticles (NPs) and imprinted metal mirrors. By changing the angle of incidence, the nanoparticle-imprinted mirror antennas (NIMAs) exhibited broadband electromagnetic enhancement from the visible to the near-infrared (NIR) regime, making them suitable for use as surface-enhanced Raman scattering (SERS)-active substrates. Unlike other SERS-active substrates that feature various structures with different periods or morphologies, the NIMAs achieved broadband electromagnetic enhancement from single configurations. The enhancement of the electric field intensity in the NIMAs originated from coupling between the localized surface plasmon resonance of the NPs and the periodic structure-excited surface plasmon resonance (SPR) of the imprinted mirror. Moreover, the coupling wavelengths could be modulated because the SPR wavelength was readily tuned by changing the angle of the incident light. Herein, we demonstrate that such NIMAs are robust substrates for visible and NIR surface-enhanced resonance Raman scattering under multiple laser lines (532, 633, and 785 nm) of excitation. In addition, we have found that NIMAs are ultrasensitive SERS-active substrates that can detect analytes (e.g., rhodamine 6G) at concentrations as low as 10(-15) M.

20.
ACS Appl Mater Interfaces ; 6(22): 19866-75, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25375995

RESUMO

In this study, we demonstrated that the improvement of detection capability of cadmium sulfide (CdS) photoconductors in the ultraviolet (UV) regime is much larger than that in the visible regime, suggesting that the deep UV laser-treated CdS devices are very suitable for low-light detection in the UV regime. We determined that a nanocrystallized CdS photoconductor can behave as a picowatt-sensitive detector in the UV regime after ultra-shallow-region crystallization of the CdS film upon a single shot from a KrF laser. Photoluminescence and Raman spectra revealed that laser treatment increased the degree of crystallization of the CdS and led to the effective removal of defects in the region of a few tens nanometers beneath the surface of CdS, confirming the result by the transmission electron microscopy (TEM) images. Optical simulations suggested that UV light was almost completely absorbed in the shallow region beneath the surface of the CdS films, consistent with the observed region that underwent major crystal structure transformation. Accordingly, we noted a dramatic enhancement in responsivity of the CdS devices in the UV regime. Under a low bias voltage (1 mV), the treated CdS device provided a high responsivity of 74.7 A W(-1) and a detectivity of 1.0×10(14) Jones under illumination with a power density of 1.9 nW cm(-2). Even when the power of the UV irradiation on the device was only 3.5 pW, the device exhibited extremely high responsivity (7.3×10(5) A W(-1)) and detectivity (3.5×10(16) Jones) under a bias voltage of 1 V. Therefore, the strategy proposed in this study appears to have great potential for application in the development of CdS photoconductors for picowatt-level detection of UV light with low power consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...