Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(9): 12540-12553, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34709548

RESUMO

The idea of reusing municipal incinerator bottom ash (MIBA), the residue from incinerating municipal solid wastes, fits nicely in a circular economy scheme, which leads to an avoided impact of landfill disposal, and at the same time reduces the demand of natural resources. Past studies have attempted to add 20 to 60% MIBA for ceramic production, and resulted in some inspiring success. Focused on delivering quality interior and exterior floor tiles meeting industrial standards, this study investigated the operative conditions and the optimum amount of MIBA in the mix. In this study, only the kaolinite clay and MIBA were used. Before making specimens, raw materials of clay and MIBA underwent SEM, EDS, and TCLP tests to determine their chemical contents. Six sets of specimens with different replacement levels of MIBA (0%, 5%, 10%, 15%, 20%, and 30%) were then prepared. These specimens were fired at 1000°C, 1050°C,1100°C, and 1150°C and the products underwent a series of mechanical tests to verify their performance. NMR (nuclear magnetic resonance spectroscopy) were also used to determining the organic compound structure after each specimens' crystallization. Research results showed that proper mix of MIBA up to 20% could result in quality tiles complying with specifications for interior and exterior flooring applications at certain kiln temperatures, while the specimens with 30% MIBA failed to meet either bending strength or size shrinkage requirement at all four kiln temperatures, and could not deliver a satisfactory result.


Assuntos
Cinza de Carvão , Incineração , Cerâmica , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos
2.
Materials (Basel) ; 14(14)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34300782

RESUMO

Municipal incinerator bottom ash (MIBA) and sewage sludge ash (SSA) are secondary wastes produced from municipal incinerators. Landfills, disposal at sea, and agricultural use have been the major outlets for these secondary wastes. As global emphasis on sustainability arises, many have called for an increasing reuse of waste materials as valuable resources. In this study, MIBA and SSA were mixed with clay for ceramic tile manufacturing in this study. Raw materials firstly went through TCLP (Toxicity Characteristic Leaching Procedure) to ensure their feasibility for reuse. From scanning electron microscopy (SEM), clay's smooth surface was contrasted with the porous surface of MIBA and SSA, which led to a higher water requirement for the mixing. Specimens with five MIBA mix percentages of 0%, 5%, 10%, 15%, and 20% (wt) and three SSA mix percentages of 0%, 10%, and 20% (wt) were made to compare how the two waste materials affected the quality of the final product and to what extent. Shrinkage tests showed that MIBA and SSA contributed oppositely to tile shrinkage, as more MIBA reduced tile shrinkage, while more SSA encouraged tile shrinkage. However, as the kiln temperature reached 1150 °C, the SiO2-rich SSA adversely reduced the shrinkage due to the glass phase that formed to expand the tile instead. Both MIBA and SSA increased water tile absorption and reduced its bending strength and wear resistance. Increasing the kiln temperature could effectively improve the water absorption, bending strength, and wear resistance of high MIBA and SSA mixes, as SEM showed a more compact structure at higher temperatures. However, when the temperature reached 1100 °C, more pores appeared and seemingly exhausted the benefit brought by the higher temperature. Complex interactions between kiln temperature and MIBA/SSA mix percentage bring unpredictable performance of tile shrinkage, bending strength, and water absorption, which makes it very challenging to create a sample meeting all the specification requirements. We conclude that a mix with up to 20% of SSA and 5% of MIBA could result in quality tiles meeting the requirements for interior or exterior flooring applications when the kiln temperature is carefully controlled.

3.
Environ Technol ; 38(13-14): 1679-1688, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28278768

RESUMO

Applying sewage sludge ash (SSA) to produce reclaimed tiles is a promising recycling technology in resolving the increasing sludge wastes from wastewater treatment. However, performance of such reclaimed tiles is inferior to that of original ceramic tiles. Many researchers have therefore tried adding various industrial by-products to improve reclaimed tile properties. In this study, multiple materials including waste glass and waste foundry sand (WFS) were added in an attempt to improve physical and mechanical properties of reclaimed tiles with SSA. Samples with various combinations of clay, WFS, waste glass and SSA were made with three kiln temperatures of 1000°C, 1050°C, and 1100°C. A series of tests on the samples were next conducted. Test results showed that waste glass had positive effects on bending strength, water absorption and weight loss on ignition, while WFS contributed the most in reducing shrinkage, but could decrease the tile bending strength when large amount was added at a high kiln temperature. This study suggested that a combination of WFS from 10% to 15%, waste glass from 15% to 20%, SSA at 10% at a kiln temperature between 1000°C and 1050°C could result in quality reclaimed tiles with a balanced performance.


Assuntos
Materiais de Construção , Vidro , Resíduos Industriais , Esgotos , Silicatos de Alumínio , Argila , Vidro/química , Resíduos Industriais/análise , Metais/análise , Reciclagem , Esgotos/análise , Poluentes Químicos da Água/análise
4.
Materials (Basel) ; 9(7)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28773668

RESUMO

In this study, properties of newly developed reclaimed tiles in a harmful environment were investigated. A portion of clay used to manufacture tiles was replaced with sewage sludge ash (SSA) and waste glass to produce the new reclaimed tiles. To investigate the effects of SSA and waste glass on the properties of the tiles, different specimens were blended and placed in acid-alkali solutions. The reclaimed tile specimens were manufactured by clay, 10% SSA, and five different mixes of waste glass replacement, namely, 0%, 10%, 20%, 40%, and 60%. These specimens were calcined at 1000 °C and subsequently underwent a series of tests, including TGA/DTA (thermogravimetric analysis/differential thermal analysis), SEM (scanning electron microscopy), XRD (X-ray diffraction), bending strength, weight loss, and porosity. Test results show that shortcomings associated with the introduction of the sludge ash were improved by the admixture of waste glass, especially in the aspects of shrinkage and bending strength. The study showed that the new reclaimed tiles performed relatively well in acid-alkali resistance tests but appeared to have better alkali resistance than acid resistance. It was also found that the optimal mix of such reclaimed tiles was 10% SSA, 10% waste glass, and 80% clay.

5.
Materials (Basel) ; 8(10): 7169-7178, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-28793627

RESUMO

Non-destructive testing (NDT) methods are important alternatives when destructive tests are not feasible to examine the in situ concrete properties without damaging the structure. The rebound hammer test and the ultrasonic pulse velocity test are two popular NDT methods to examine the properties of concrete. The rebound of the hammer depends on the hardness of the test specimen and ultrasonic pulse travelling speed is related to density, uniformity, and homogeneity of the specimen. Both of these two methods have been adopted to estimate the concrete compressive strength. Statistical analysis has been implemented to establish the relationship between hammer rebound values/ultrasonic pulse velocities and concrete compressive strength. However, the estimated results can be unreliable. As a result, this research proposes an Artificial Intelligence model using support vector machines (SVMs) for the estimation. Data from 95 cylinder concrete samples are collected to develop and validate the model. The results show that combined NDT methods (also known as SonReb method) yield better estimations than single NDT methods. The results also show that the SVM model is more accurate than the statistical regression model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...