Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 475: 134920, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38880047

RESUMO

Dibutyl phthalate (DBP) as a plasticizer has been widely used in the processing of plastic products. Nevertheless, these DBP additives have the potential to be released into the environment throughout the entire life cycle of plastic products. Herein, the leaching behavior of DBP from PVC microplastics (MPs) in freshwater and seawater and its potential risks were investigated. The results show that the plasticizer content, UV irradiation, and hydrochemical conditions have a great influence on the leaching of DBP from the MPs. The release of DBP into the environment increases proportionally with higher concentrations of additive DBP in MPs, particularly when it exceeds 15 %. The surface of MPs undergoes accelerated oxidation and increased hydrophilicity under UV radiation, thereby facilitating the leaching of DBP. Through 30 continuous leaching experiments, the leaching of DBP from MPs in freshwater and seawater can reach up to 12.28 and 5.42 mg g-1, respectively, indicating that MPs are a continuous source of DBP pollution in the aquatic environment. Moreover, phthalate pollution index (PPI) indicates that MPs can significantly increase DBP pollution in marine environment through land and sea transport processes. Therefore, we advocate that the management of MPs waste containing DBP be prioritized in coastal sustainable development.

2.
Environ Res ; 252(Pt 1): 118793, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552828

RESUMO

Glomalin-related soil protein (GRSP) is a significant component in the sequestration of heavy metal in soils, but its mechanisms for metal adsorption are poorly known. This study combined spectroscopic data with molecular docking simulations to reveal metal adsorption onto GRSP's surface functional groups at the molecular level. The EXAFS combined with FTIR and XPS analyses indicated that the adsorption of Cd(II), Sr(II), and Ni(II) by GRSP occurred mainly through the coordination of -OH and -COOH groups with the metal. The -COOH and -OH groups bound to the metal as electron donors and the electron density of the oxygen atom decreased, suggesting that electrostatic attraction might be involved in the adsorption process. Two-dimensional correlation spectroscopy revealed that preferential adsorption occurred on GRSP for the metal in sequential order of -COOH groups followed by -OH groups. The presence of the Ni-C shell in the Ni EXAFS spectrum suggested that Ni formed organometallic complexes with the GRSP surface. However, Sr-C and Cd-C were absent in the second shell of the Sr and Cd spectra, which was attributed to the adsorption of Sr and Cd ions with large hydration ion radius by GRSP to form outer-sphere complexes. Through molecular docking simulations, negatively charged residues such as ASP151 and ASP472 in GRSP were found to provide electrostatic attraction and ligand combination for the metal adsorption, which was consistent with the spectroscopic analyses. Overall, these findings provided new insights into the interaction mechanisms between GRSP and metals, which will help deepen our understanding of the ecological functions of GRSP in metal sequestration.


Assuntos
Simulação de Acoplamento Molecular , Níquel , Níquel/química , Adsorção , Cádmio/química , Sedimentos Geológicos/química , Proteínas Fúngicas/química , Metais Pesados/química , Áreas Alagadas , Poluentes do Solo/química , Glicoproteínas
3.
J Hazard Mater ; 470: 134092, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554515

RESUMO

Mesh-structured films formed by the post-processing of microfibers improves their permeability and dexterity, such as disposable masks. However, the aging behavior and potential risks of mesh-structured microfibers (MS-MFs) in landfill leachate remain poorly understood. Herein, the aging behavior and mechanisms of MS-MFs and ordinary polypropylene-films (PP-films) microplastics, as well as their leaching concerning dissolved organic matter (DOM) in landfill leachate were investigated. Results revealed that MS-MFs underwent more significant physicochemical changes than PP-films during the aging process in landfill leachate, due to their rich porous habitats. An important factor in the photoaging of MS-MFs was related to reactive oxygen species produced by DOM, and this process was promoted by photoelectrons under UV irradiation. Compared with PP-films, MS-MFs released more DOM and nano-plastics fragments into landfill leachate, altering the composition and molecular weight of DOM. Aged MS-MFs-DOM generated new components, and humus-like substances produced by photochemistry showed the largest increase. Correlation analysis revealed that leached DOM was positively correlated with oxygen-containing groups accumulated in aged MS-MFs. Overall, MS-MFs will bring higher environmental risks and become a new long-term source of DOM contaminants in landfill leachate. This study provides new insights into the impact of novel microfibers on landfill leachate carbon dynamics.

4.
J Hazard Mater ; 465: 133153, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056268

RESUMO

Glomalin-related soil protein (GRSP) is a stable iron-organic carbon mixture that can enhance heavy metal sequestration in soils. However, the roles of GRSP in the transformation and fate of Cr(VI) have been rarely reported. Herein, we investigated the electrochemical and photocatalytic properties of GRSP and its mechanisms in Cr(VI) adsorption and reduction. Results showed that GRSP had a stronger ability for Cr(VI) adsorption and reduction than other biomaterials, with the highest adsorption amount of up to 0.126 mmol/g. The removal efficiency of Cr(VI) by GRSP was enhanced (4-7%) by ultraviolet irradiation due to the hydrated electrons produced by GRSP. Fe(II) ions, persistent free radicals, and oxygen-containing functional groups on the GRSP surface as electron donors participated in the reduction of Cr(VI) under dark condition. Moreover, Cr(III) was mainly adsorbed on the -COOH groups of GRSP via electrostatic interactions. Based on 2D correlation spectroscopy, the preferential adsorption occurred on the GRSP surface for Cr(VI) in the sequential order of CO → COO- → O-H → C-O. This work provides new insights into the Cr(VI) adsorption and reduction mechanism by GRSP. Overall, GRSP can serve as a natural iron-organic carbon for the photo-reduction of Cr(VI) pollution in environments.


Assuntos
Cromo , Solo , Solo/química , Cromo/análise , Ferro , Proteínas Fúngicas/química , Glicoproteínas/química , Carbono , Adsorção
5.
Sci Total Environ ; 904: 166684, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37652389

RESUMO

Coastal sediments act as sinks of sediment organic matter (SOM) and metals because of their special land-sea location and depositional properties. However, there are few reports on the correlation between the sources of organic matter (OM) and associated potential toxic metals (PTMs). In this study, we combined CN stable isotope analysis and positive matrix factorization to identify the matter and metal sources of OM and glomalin-related soil protein (GRSP) in an estuary under several decades of urbanization. The results of the positive matrix factorization (PMF) reveal a correlation between the sources of total sediment metals and the sources of OM-related metals. The sources of both SOM-bound PTMs and GRSP-bound PTMs are significantly related to the sources of total PTMs. OM sources were elucidated through 13C-15 N stable isotopes, and the potential sources of different types of OM differed. In addition, there is a significant correlation between OM-associated PTMs and organic matter sources. Interestingly, the functional groups of SOM were mainly influenced by multiple PTM sources but no OM source, while the functional groups of GRSP were regulated by a single metal source and OM source. This study deepened the understanding of the coupling between PTMs and SOM. The possibility of combined use of positive matrix factorization and 13C-15 N stable isotope tracing of metals as well as the sources of each metal fractions has been evaluated, which will provide new insights for the transportation of PTMs.

6.
Sci Total Environ ; 881: 163461, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37062309

RESUMO

Glomalin-related soil protein (GRSP) is a widespread recalcitrant soil protein complex that promotes the immobilization of metals in soils. Herein, we combined indoor simulation and field investigation to reveal the interfacial behaviors and ecological functions of GRSP to the three typical metals (Sr(II), Ni(II), and Cd(II)). The kinetic and isotherm data suggested that GRSP had a strong ability to adsorb the metals, which was closely related to the Hard-Soft-Acid-Base theory and the film diffusion mechanisms. Regarding environmental factors, the higher solution pH was beneficial to the adsorption of the metals onto GRSP, while the adsorption capacity decreased at lower or higher salinity due to the salting-out and Na+ competition effects. Moreover, Sr(II), Ni(II), and Cd(II) showed competitive adsorption onto GRSP, which was associated with the spatial site resistance effect. By comparing the retention factors of seven natural and artificial particles, GRSP had elevated distribution coefficients in high metal concentration, while its retention factors showed a relatively lower decrease, suggesting that GRSP had excellent buffer performance for a potential metal pollution emergency. Through the continental-scale coastal regions investigation, GRSP sequestered 1.05-3.11 µmol/g Ni, 0.31-1.49 µmol/g Sr, and 0.01-0.06 µmol/g Cd with 0.54-0.91 % of the sediment mass, demonstrating its strong ability to adsorb the metals. Therefore, we advocate that GRSP, as a recalcitrant protein complex, can be considered an effective tool for buffering capacity of metal pollution and environmental capacity within coastal wetlands.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio , Níquel , Ecossistema , Estrôncio , Proteínas Fúngicas/metabolismo , Solo
7.
Chem Eng J ; 439: 135613, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36568492

RESUMO

The demand for disposable face masks (DFMs) increased sharply in response to the COVID-19 pandemic. However, information regarding the underlying roles of the largely discarded DFMs in the environment is extremely lacking. This study focused on the pristine and UV-aged DFMs as vectors of metal ions (Pb(Ⅱ), Cd(Ⅱ), and Sr(Ⅱ)). Further, the aging mechanism of DFMs with UV radiation as well as the interaction mechanisms between DFMs and metal ions were investigated. Results revealed that the aging process would help to promote more metal ions adsorbed onto DFMs, which was mainly attributed to the presence of oxygen-containing groups on the aged DFMs. The adsorption affinity of pristine and aged DFMs for the metal ions followed Pb(Ⅱ) > Cd(Ⅱ) > Sr(Ⅱ), which was positively corrected with the electronegativity of the metals. Interestingly, we found that even if DFMs were not disrupted, DFMs had similar or even higher adsorption affinity for metals compared with other existing microplastics. Besides, regarding environmental factors, including salinity and solution pH played a crucial role in the adsorption processes, with greater adsorption capacities for pristine and aged DFMs at higher pH values and low salinity. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and density functional theory further confirmed that the pristine DFMs interacted with the metals mainly through electrostatic interaction, while electrostatic interaction and surface complexation jointly regulated the adsorption of the metals onto aged DFMs. Overall, these findings would help to evaluate environmental behaviors and risks of DFMs associated with metals.

8.
Water Res ; 225: 119144, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36194945

RESUMO

Microplastics (MPs) are known to act as carriers of heavy metals; however, little is known about the intrinsic chemical additives of MPs, such as hexabromocyclododecane (HBCD), in terms of the adsorption behaviors and migration risks of heavy metals on MPs. Here, we reported the potential mechanisms and risks of HBCD inherent in polystyrene (PS) MPs with Cu(II), Ni(II), and Zn(II) adsorption/desorption. A comparison of the adsorption capacity of the metals onto HBCD/PS composites (HBCD/PS) MPs (10.31-20.76 µmol/g), pure MPs (0-3.60 µmol/g), and natural minerals (0.11-13.88 µmol/g) showed that the addition of HBCD significantly promoted the metals adsorption onto the HBCD/PS MPs, and even exceeded that of natural particles. Isotherms and thermodynamic data suggested that the adsorption process of the metals onto the HBCD/PS MPs was spontaneous and endothermic, and that the adsorption was a mainly multi-ion process with an inclined direction. Furthermore, the results of SEM-EDS, FTIR, and XPS analyses, as well as density functional theory well explained that the metals were mainly adsorbed on the -O and -Br groups of the HBCD/PS MPs via electrostatic interactions and surface complexation. More importantly, by comparing the desorption activity with natural river water and seawater, HBCD inherent in MPs can enhance the long-range transfer of metals carried by the HBCD/PS MPs from contamination sources to potential sink like oceans. Thus, the HBCD/PS MPs with high loading of Cu(II), Ni(II), and Zn(II) could be potential secondary sources of these metals in seawater. Overall, these findings revealed the potential risks of flame retardant in MPs associated with metal migration, and advocated that flame retardant-related waste MPs should be included in coastal sustainable development.


Assuntos
Retardadores de Chama , Metais Pesados , Poluentes Químicos da Água , Microplásticos , Retardadores de Chama/análise , Plásticos , Adsorção , Poliestirenos , Poluentes Químicos da Água/análise , Metais Pesados/análise , Água
9.
Ecotoxicol Environ Saf ; 236: 113489, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390691

RESUMO

Glomalin-related soil protein (GRSP), a microbial product that can be used as a bioflocculant, is critical to metal sequestration in the ecosystem. However, the relationship between GRSP and heavy metal has not been well explored. In this study, the adsorption behaviors and mechanisms of Pb(II) and Zn(II) ions on GRSP were investigated. Results reveal that the Pb(II) and Zn(II) adsorption closely conform to the pseudo second-order model, which indicates that the chemisorption of GRSP occurred after intra-particle diffusion. The adsorption process is influenced by the degree of pollution, pH value, GRSP content in the environment. In addition, scanning electron microscopy coupled with microanalysis (SEM-EDX) reveals that the surface structure of GRSP is irregularly blocky or flaky and metal ions are uniformly distributed on the surface of GRSP. Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis show that the carboxyl and nitro groups on GRSP act as ligands to form complexes with two divalent metal ions. The interaction between GRSP and the metals is mainly surface complexation. This research further reveals the dynamic response of its structural components when GRSP sequestrates heavy metals in mangrove sediment and aqueous ecosystems, demonstrating a new perspective for the transport and transformation of heavy metals onto GRSP.


Assuntos
Metais Pesados , Solo , Adsorção , Ecossistema , Cinética , Chumbo , Metais Pesados/análise , Solo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Zinco
10.
Sci Total Environ ; 820: 153049, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35032530

RESUMO

With the outbreak and widespread of the COVID-19 pandemic, large numbers of disposable face masks (DFMs) were abandoned in the environment. This study first investigated the sorption and desorption behaviors of four antibiotics (tetracycline (TC), ciprofloxacin (CIP), sulfamethoxazole (SMX), and triclosan (TCS)) on DFMs in the freshwater and seawater. It was found that the antibiotics in the freshwater exhibited relatively higher sorption and desorption capacities on the DFMs than those in the seawater. Here the antibiotics sorption processes were greatly related to their zwitterion species while the effect of salinity on the sorption processes was negligible. However, the desorption processes were jointly dominated by solution pH and salinity, with greater desorption capacities at lower pH values and salinity. Interestingly, we found that the distribution coefficient (Kd) of TCS (0.3947 L/g) and SMX (0.0399 L/g) on DFMs was higher than those on some microplastics in freshwater systems. The sorption affinity of the antibiotics onto the DFMs followed the order of TCS > SMX > CIP > TC, which was positively correlated with octanol-water partition coefficient (log Kow) of the antibiotics. Besides, the sorption processes of the antibiotics onto the DFMs were mainly predominated by film diffusion and partitioning mechanism. Overall, hydrophobic interaction regulated the antibiotics sorption processes. These findings would help to evaluate the environmental behavior of DFMs and to provide the analytical framework of their role in the transport of other pollutants.


Assuntos
COVID-19 , Poluentes Químicos da Água , Adsorção , Antibacterianos/química , Água Doce/química , Humanos , Máscaras , Pandemias , Plásticos/química , Água do Mar/química , Poluentes Químicos da Água/análise
11.
Environ Pollut ; 284: 117164, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33894538

RESUMO

Microplastics (MPs) are becoming a major concern due to their great potential to sorb and transport pollutants in the aquatic environment; hexabromocyclododecane (HBCD) is a common chemical additive in polystyrene (PS) MPs. However, the underlying mechanisms for the interaction of tetracycline (TC) onto HBCD-PS composites MPs (HBCD-PS MPs) are still not well documented. Our findings showed that the addition of HBCD resulted in a relatively higher hydrophobicity of PS MPs, and significantly enhanced the sorption ability of HBCD-PS MPs for TC. The kinetic models suggested that the sorption of TC onto PS and HBCD-PS MPs were mainly controlled by film diffusion and intra-particle diffusion, respectively. The statistical physics models were used to elucidate the sorption of TC onto PS and HBCD-PS MPs was associated with the formation of the monolayer, and the results indicated the TC was sorbed onto the two MPs by both multi-molecular and non-parallel processes. The TC sorption was solution pH-dependent while the effect of NaCl content on TC sorption was negligible. The presence of Cu(Ⅱ), Pb(Ⅱ), Cd(Ⅱ), and Zn(Ⅱ) ions had different influences on the TC sorption onto both the MPs. Overall, various mechanisms including π-π and hydrophobic interactions jointly regulated the sorption of TC onto both the MPs. Our results provided new insights into the sorption behavior and interaction mechanisms of TC onto both the MPs and highlighted that the addition of HBCD likely increased the enrichment capacity of MPs for pollutants in the environment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Hidrocarbonetos Bromados , Física , Plásticos , Poliestirenos , Tetraciclina , Poluentes Químicos da Água/análise
12.
Chemosphere ; 272: 129638, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33485046

RESUMO

Information on the interactions of microplastics (MPs) with dissolved organic matter (DOM) is essential for understanding their environmental impacts. This study selected fulvic acid (FA) as a typical DOM to investigate the influence of contact time, temperature, dosage, solution pH, salinity, and coexisting metal ions on the adsorption of FA onto polyamide 6 (PA6) MPs. The adsorption kinetic and isotherm can be successfully described by mixed-order (MO) and Freundlich models. The adsorption site energy distribution based on the Freundlich equation was applied to analyze the interaction between FA and PA6-MPs and the adsorption site heterogeneity. Thermodynamic analysis demonstrated that the values of parameters (ΔGads°, ΔSads°, ΔHads°) were significantly affected by initial solution concentrations and the adsorption process was spontaneous, endothermic, and randomness-increased. Fourier transform-infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) revealed the importance of amide functional groups of PA6-MPs in controlling FA adsorption. Hydrogen bonds, hydrophobic, electrostatic, and n-π electron donor-acceptor (n-π EDA) interactions played different roles on adsorption of FA under different conditions of solution chemistry. These findings are beneficial to provide new insights involving the adsorption behavior and interaction mechanisms of FA onto PA6-MPs for the environmental risk assessment of MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Benzopiranos , Caprolactama/análogos & derivados , Concentração de Íons de Hidrogênio , Cinética , Plásticos , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Poluentes Químicos da Água/análise
13.
Chemosphere ; 265: 129079, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33288280

RESUMO

The role of microplastics (MPs) as a carrier of pollutants in water environment is an emerging issue; however, information regarding the underlying mechanisms for malachite green (MG) and Pb(II) adsorption onto hexabromocyclododecane (HBCD)-polystyrene (PS) composites MPs (HBCD-PS MPs) is still lacking. In this study, the adsorption behaviors and mechanisms of MG and Pb(II) onto PS and HBCD-PS MPs were investigated in batch adsorption experiments. The amounts of MG and Pb(II) adsorbed onto PS MPs were negligible while the presence of HBCD significantly enhanced the adsorption of MG and Pb(II) onto HBCD-PS MPs. The results of intra-particle and film diffusion model confirmed that the adsorption of MG and Pb(II) onto HBCD-PS MPs was dominated by intra-particle diffusion. The maximum adsorption amount (qm) of Pb(II) and MG onto HBCD-PS MPs followed the sequence of Pb(II) (3.33 µmol g-1) > MG (1.87 µmol g-1). In binary systems, MG and Pb(II) showed competitive adsorption onto HBCD-PS MPs, and Pb(II) exhibited relatively higher affinity to be adsorbed onto HBCD-PS MPs. Solution pH and salinity played a crucial role in the adsorption process. XPS analysis suggested that the -Br participated in the adsorption process as an electron-withdrawing group. Overall, electrostatic interaction regulated the adsorption of MG and Pb(II) onto HBCD-PS MPs. Results from this study demonstrated that HBCD could enhance the role of MPs in the MG and Pb(II) migration by changing their adsorption behavior onto MPs.


Assuntos
Microplásticos , Poluentes Químicos da Água , Adsorção , Hidrocarbonetos Bromados , Chumbo , Plásticos , Poliestirenos , Corantes de Rosanilina , Poluentes Químicos da Água/análise
14.
J Hazard Mater ; 403: 123548, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32795818

RESUMO

In water environments, nylon microplastics (MPs) and heavy metals are two kinds of common pollutants. This study investigated the adsorption of three divalent metals (Cu(II), Ni(II), Zn(II)) onto collected nylon MPs as function of contact time, temperature, solution pH, ionic strength and concentration of fulvic acid (FA). The kinetic data fitted well with the Elovich and pseudo-second order equations. The result of shrinking core model (SCM) confirms that the adsorption of Cu(II) and Zn(II) was mainly controlled by intraparticle diffusion. The adsorption of three metal ions onto collected nylon MPs is spontaneous, endothermic, with an increased randomness in nature. The Langmuir and Freundlich models successfully described the adsorption isotherms. The speciation distributions of three divalent metals in aqueous solutions were identified to analyze the effects of initial solution pH, ionic strength and fulvic acid concentrations on the adsorption amounts. X-ray photoelectron spectroscopy (XPS) analysis indicates the importance of surface O-containing groups of collected nylon MPs in controlling the adsorption of three metal ions. This research provides a clear theoretical basis for the behavior of nylon MPs as heavy metals (Cu(II), Ni(II), Zn(II)) carrier and highlights their environmental toxicity, which deserves to be further concerned.

15.
J Hazard Mater ; 386: 121960, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31893555

RESUMO

Both heavy metals and microplastic pollutants are ubiquitous in the aquatic environment. The uptake of lead(II) ions from aqueous solutions onto aged nylon microplastics was investigated as a function of pH, contact time, temperature, supporting electrolyte concentration and fulvic acid concentration in batch studies. The effect of surface properties on the adsorption behavior of lead(II) was investigated with scanning electron microscope equipped with the energy dispersive X-ray spectroscope (SEM-EDAX), Fourier transform-infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and differential scanning calorimetric (DSC). The adsorption kinetics conformed to the pseudo-second order equation, Elovich equation and intraparticle diffusion model well. The experimental data of the adsorption process was fitted to the Langmuir and Freundlich adsorption isotherms and the parameters were estimated. The lead(II) uptake on aged nylon microplastics was spontaneous and endothermic in nature. The lead(II) adsorption was significantly dependent on the sodium chloride concentrations, initial solution pH and fulvic acid concentrations. Results of this study highlight the importance of surface carboxyl function group of aged nylon microplastics in controlling lead(II) adsorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...