Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916242

RESUMO

Diet-induced obesity (DIO) is considered the main risk factor for cardiovascular diseases. Increases in the plasma levels of tumor necrosis factor alpha (TNF-α) is associated with DIO. Etanercept, a TNF-α inhibitor, has been shown to alleviate cardiac hypertrophy. To investigate the effect of etanercept on cardiac fibrosis in DIO model, rats on high fat diet (HFD) were subdivided into two groups: the etanercept group and vehicle group. Cardiac injury was identified by classic methods, while fibrosis was characterized by histological analysis of the hearts. Etanercept treatment at 0.8 mg/kg/week twice weekly by subcutaneous injection effectively alleviates the cardiac fibrosis in HFD-fed rats. STAT3 activation seems to be induced in parallel with fibrosis-related gene expression in the hearts of HFD-fed rats. Decreased STAT3 activation plays a role in the etanercept-treated animals. Moreover, fibrosis-related genes are activated by palmitate in parallel with STAT3 activation in H9c2 cells. Etanercept may inhibit the effects of palmitate, but it is less effective than a direct inhibitor of STAT3. Direct inhibition of STAT3 activation by etanercept seems unlikely. Etanercept has the ability to ameliorate cardiac fibrosis through reduction of STAT3 activation after the inhibition of TNF-α and/or its receptor.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 390(10): 997-1003, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28689255

RESUMO

Morin is a flavonoid contained in guava that is known to reduce hyperglycemia in diabetics. Morin has been demonstrated to increase plasma insulin. However, the mechanism(s) remains unknown. The present study is designed to investigate the effect of morin on the imidazoline receptor (I-R) that regulates insulin secretion. We used Chinese hamster ovary (CHO) cells transfected with an I-R expression construct (NISCH-CHO-K1 cells) to identify the direct effect of morin on the I-R. Moreover, the imidazoline I3 receptor (I-3R) is known to be present in pancreatic ß cells and involved in insulin secretion. Therefore, we applied a specific antagonist (KU14R) to block I-3R in diabetic rats. Additionally, the effect of morin on insulin secretion was characterized in isolated pancreatic islets. Morin decreased blood glucose levels by increasing plasma insulin levels in diabetic rats. In CHO cells expressing an I-R, morin increased calcium influx in a dose-dependent manner. Additionally, KU14R dose-dependently inhibited the morin-induced effects, including hypoglycemia and the increase in insulin secretion and plasma C-peptide levels, in diabetic rats. Furthermore, morin enhanced insulin secretion from isolated pancreatic islets, and this effect was also dose-dependently inhibited by KU14R. Phospholipase C (PLC) is known to couple with the I-R, and a PLC inhibitor dose-dependently attenuated the insulin secretion induced by morin in isolated pancreatic islets. Taken together, these data suggest that morin can activate I-3R to enhance insulin secretion. Therefore, it would be useful to develop morin into a treatment for diabetic disorders.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Flavonoides/farmacologia , Receptores de Imidazolinas/agonistas , Receptores de Imidazolinas/biossíntese , Animais , Antioxidantes/uso terapêutico , Benzofuranos/farmacologia , Células CHO , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Flavonoides/uso terapêutico , Imidazóis/farmacologia , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley
3.
Clin Exp Pharmacol Physiol ; 44(12): 1254-1262, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28699234

RESUMO

Morin is a flavonoid contained in guava that is known to reduce hyperglycemia in diabetes. Insulin secretion has been demonstrated to increase following the administration of morin. The present study is designed to investigate the potential mechanism(s) of morin-induced insulin secretion in the MIN6 cell line. First, we identified that morin induced a dose-dependent increase in insulin secretion and intracellular calcium content in MIN6 cells. Morin potentiated glucose-stimulated insulin secretion (GSIS). Additionally, we used siRNA for the ablation of imidazoline receptor protein (NISCH) expression in MIN6 cells. Interestingly, the effects of increased insulin secretion by morin and canavanine were markedly reduced in Si-NISCH cells. Moreover, we used KU14R to block imidazoline I3 receptor (I-3R) that is known to enhance insulin release from the pancreatic ß-cells. Without influence on the basal insulin secretion, KU14R dose-dependently inhibited the increased insulin secretion induced by morin or efaroxan in MIN6 cells. Additionally, effects of increased insulin secretion by morin or efaroxan were reduced by diazoxide at the dose sufficient to open KATP channels and attenuated by nifedipine at the dose used to inhibit L-type calcium channels. Otherwise, phospholipase C (PLC) is introduced to couple with imidazoline receptor (I-R). The PLC inhibitor dose-dependently inhibited the effects of morin in MIN6 cells. Similar blockade was also observed in protein kinase C (PKC) inhibitor-treated cells. Taken together, we found that morin increases insulin secretion via the activation of I-R in pancreatic cells. Therefore, morin would be useful to develop in the research and treatment of diabetic disorders.


Assuntos
Flavonoides/farmacologia , Receptores de Imidazolinas/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Relação Dose-Resposta a Droga , Inativação Gênica , Glucose/farmacologia , Receptores de Imidazolinas/genética , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos
4.
Nutrients ; 9(7)2017 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665324

RESUMO

Diosmin is a nutrient that is widely contained in citrus and that has been indicated to improve glucose metabolism in diabetic disorders. Recently, we demonstrated that diosmin induces ß-endorphin to lower hyperglycemia in diabetic rats. However, the mechanisms of diosmin in opioid secretion were unclear. Therefore, we focused on the secretion of opioids from isolated adrenal glands induced by diosmin. The changes in the released ß-endorphin-like immunoreactivity (BER) were determined using ELISA. Diosmin increased the BER level in a dose-dependent manner, and this effect was markedly reduced in the absence of calcium ions. Activation of the imidazoline I-2 receptor (I-2R) has been introduced to induce opioid secretion. Interestingly, we observed that diosmin activates CHO cells expressing I-R. Additionally, diosmin-increased BER was inhibited by the blockade of I-2R in isolated adrenal glands. Additionally, an antagonist of I-2R blocked diosmin-induced effects, including the reduction in hyperglycemia and the increase in plasma BER in streptozotocin-induced diabetic rats (STZ-diabetic rats). Repeated treatment of STZ-diabetic rats with diosmin for one week induced changes in hepatic glycogen, lipid levels, and the expression of phosphoenolpyruvate carboxykinase (PEPCK). Furthermore, an antagonist of I-2R blocked the diosmin-induced changes. Additionally, plasma lipids modified by diosmin were also reversed by the blockade of I-2R in STZ-diabetic rats. Taken together, we suggest that diosmin may activate I-2R to enhance the secretion of ß-endorphin from adrenal glands and to influence metabolic homeostasis, resulting in alleviation of blood glucose and lipids in STZ-diabetic rats.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diosmina/uso terapêutico , Receptores de Imidazolinas/metabolismo , Lipídeos/sangue , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Células CHO , Cálcio , Cricetinae , Cricetulus , Hipoglicemiantes/uso terapêutico , Receptores de Imidazolinas/genética , Ratos , Ratos Sprague-Dawley
5.
Clin Exp Pharmacol Physiol ; 44(5): 549-555, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28218955

RESUMO

Diosmin is one of the flavonoids contained in citrus and has been demonstrated to improve glucose metabolism in diabetic disorders. However, the mechanism(s) of diosmin in glucose regulation remain obscure. Therefore, we investigated the potential mechanism(s) for the antihyperglycaemic action of diosmin in streptozotocin-induced diabetic rats (STZ-diabetic rats). Diosmin lowered hyperglycaemia in a dose-dependent manner in STZ-diabetic rats. This action was inhibited by naloxone at a dose sufficient to block opioid receptors. Additionally, we determined the changes in plasma ß-endorphin-like immunoreactivity (BER) using enzyme-linked immunosorbent assay (ELISA). Diosmin also increased BER dose-dependently in the same manner. Repeated treatment of STZ-diabetic rats with diosmin for 1 week resulted in an increase in the expression of the glucose transporter subtype 4 (GLUT 4) in the soleus muscle and a reduction in the expression of phosphoenolpyruvate carboxykinase (PEPCK) in the liver. These effects were also inhibited by naloxone at a dose sufficient to block opioid receptors. Bilateral adrenalectomy in STZ-diabetic rats eliminated the actions of diosmin, including both the reduction in hyperglycemia and the elevation of plasma BER. In conclusion, our results suggest that diosmin may act on the adrenal glands to enhance the secretion of ß-endorphin, which can stimulate the opioid receptors to attenuate hepatic gluconeogenesis and increase glucose uptake in soleus muscle, resulting in reduced hyperglycemia in STZ-diabetic rats.


Assuntos
Citrus , Diabetes Mellitus Tipo 1/sangue , Diosmina/uso terapêutico , Flavonoides/uso terapêutico , Hipoglicemiantes/uso terapêutico , beta-Endorfina/sangue , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diosmina/farmacologia , Relação Dose-Resposta a Droga , Flavonoides/farmacologia , Hiperglicemia/sangue , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...