Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 664: 478-486, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484516

RESUMO

HYPOTHESIS: Spreading of liquids on soft solids often occurs intermittently, i.e., the liquid's wetting front switches between sticking and slipping. Studies of this so-called stick-slip wetting on soft solids mostly are confined within quasi-static or forced spreading conditions. In these situations, because the sticking duration is set much larger than the viscoelastic relaxation time of the solid, a ridge is persistently and fully developed at the wetting front as the soft solid yields to the liquid's surface tension. The sticking duration and spreading velocity, therefore, were shown to have little impact to the contact angle change required for stick-to-slip transitions. For unsteady wetting of soft solids, a commonly encountered but largely unexplored situation, we hypothesize that the stick-to-slip transition is controlled not only by a combination of sticking duration and the spreading velocity, but also by an increasing depinning threshold caused by the growing ridge at the wetting front. EXPERIMENT: We performed unsteady wetting experiment on soft solids by letting water droplets spread freely on soft solid surfaces of various stiffness. We capture both the stick-slip spreading behavior and growing wetting ridges using synchronous high-speed imaging and high-speed interferometry. Recorded data of liquid spreading and solid deforming at the wetting front were analyzed to shed light on the relation between stick-slip characteristics and the growing wetting ridge. FINDINGS: We find that intermittent wetting on a soft solid surface results from a competition between three key factors: liquid inertia, capillary force change during sticking, and growing pinning force caused by the solid's viscoelastic response. We theoretically formulate their quantitative contributions to predict how stick-to-slip transitions occur, i.e., how the contact angle change and sticking duration depend on the liquid's spreading velocity and the solid's viscoelastic characteristics. This provides a mechanistic understanding and methods to control unsteady wetting phenomena in diverse applications, from tissue engineering and fabrication of flexible electronics to biomedicine.

2.
Phys Rev Lett ; 132(5): 058203, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364153

RESUMO

Recently, there is much interest in droplet condensation on soft or liquid or liquidlike substrates. Droplets can deform soft and liquid interfaces resulting in a wealth of phenomena not observed on hard, solid surfaces (e.g., increased nucleation, interdroplet attraction). Here, we describe a unique collective motion of condensate water droplets that emerges spontaneously when a solid substrate is covered with a thin oil film. Droplets move first in a serpentine, self-avoiding fashion before transitioning to circular motions. We show that this self-propulsion (with speeds in the 0.1-1 mm s^{-1} range) is fueled by the interfacial energy release upon merging with newly condensed but much smaller droplets. The resultant collective motion spans multiple length scales from submillimeter to several centimeters, with potentially important heat-transfer and water-harvesting applications.

3.
Mater Horiz ; 11(9): 2180-2190, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38406864

RESUMO

Achieving programmable and reversible deformations of soft materials is a long-standing goal for various applications in soft robotics, flexible electronics and many other fields. Swelling-induced shape morphing has been intensively studied as one of the potential mechanisms. However, achieving an extremely large swelling ratio (>1000% in volume) remains challenging with existing swellable soft materials (e.g., hydrogels and water-swellable rubbers). Inspired by the shape change enabled by the osmosis-driven swelling in living organisms, herein, we report a polymer composite system composed of fine sodium chloride (NaCl) particles embedded in Ecoflex00-10 polymer. This Ecoflex00-10/NaCl polymer composite can achieve controllable volumetric swelling up to 3000% while maintaining a relatively high elastic stiffness. We demonstrate that this swellable polymer composite can serve as an active component to drive the shape morphing of various structures. By controlling the geometric design and the fraction of the NaCl particle, morphing structures capable of deforming sequentially are created. Finally, by encapsulating 3D printed polymer composite patterns using water-permeable PDMS membrane, a programmable braille with visual and tactile regulation is demonstrated for the purpose of information encryption. Our study provides a facile approach to generate customizable shape-morphing structures, aiming to broaden the range of techniques and applications for morphing devices.

4.
Langmuir ; 39(8): 3162-3167, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795493

RESUMO

A water droplet can bounce off superhydrophobic surfaces multiple times before coming to a stop. The energy loss for such droplet rebounds can be quantified by the ratio of the rebound speed UR and the initial impact speed UI; i.e., its restitution coefficient e = UR/UI. Despite much work in this area, a mechanistic explanation for the energy loss for rebounding droplets is still lacking. Here, we measured e for submillimeter- and millimeter-sized droplets impacting two different superhydrophobic surfaces over a wide range of UI (4-700 cm s-1). We proposed simple scaling laws to explain the observed nonmonotonic dependence of e on UI. In the limit of low UI, energy loss is dominated by contact-line pinning and e is sensitive to the surface wetting properties, in particular to contact angle hysteresis Δ cos θ of the surface. In contrast, e is dominated by inertial-capillary effects and does not depend on Δ cos θ in the limit of high UI.

5.
Soft Matter ; 18(29): 5474-5482, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35833825

RESUMO

Viscous droplets impinging on soft substrates may exhibit several distinct behaviours including repeated bouncing, wetting, and hovering, i.e., spreading and retracting after impact without bouncing back or wetting. We experimentally study the conditions enabling these characteristic behaviours by systematically varying substrate elasticity, impact velocity and liquid viscosity. For each substrate elasticity, the transition to wetting is determined as the dependence of the Weber number We, which measures the droplet's kinetic energy against its surface energy, on the Ohnesorge number Oh, which compares viscosity to inertia and capillarity. We find that while We at the wetting transition monotonically decreases with Oh for relatively rigid substrates, it exhibits a counter-intuitive behaviour in which it first increases and then gradually decreases for softer substrates. We experimentally determine the dependence of the maximum Weber number allowing non-wetting impacts on substrate elasticity and show that it provides an excellent quantitative measure of liquid repellency for a wide range of surfaces, from liquid to soft surfaces and non-deformable surfaces.

6.
Indoor Air ; 31(5): 1639-1644, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33876847

RESUMO

Facing shortages of personal protective equipment, some clinicians have advocated the use of barrier enclosures (typically mounted over the head, with and without suction) to contain aerosol emissions from coronavirus disease 2019 (COVID-19) patients. There is, however, little evidence for its usefulness. To test the effectiveness of such a device, we built a manikin that can expire micron-sized aerosols at flow rates close to physiological conditions. We then placed the manikin inside the enclosure and used a laser sheet to visualize the aerosol leaking out. We show that with sufficient suction, it is possible to effectively contain aerosol from the manikin, reducing aerosol exposure outside the enclosure by 99%. In contrast, a passive barrier without suction only reduces aerosol exposure by 60%.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Infecções/métodos , Humanos , Modelos Anatômicos , SARS-CoV-2 , Sucção/métodos
7.
Arch Oral Biol ; 53(5): 429-36, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18187105

RESUMO

UNLABELLED: Previous studies showed that regulatory subunits of type II cyclic AMP-dependent protein kinase (RII) are present in adult rat parotid acinar cells, and are secreted into saliva. If the synthesis and intracellular distribution of RII exhibit developmental specificity, then RII can be an indicator of secretory and regulatory activity of salivary glands. OBJECTIVE: To determine the expression and distribution of RII in the rat parotid at specific ages representing defined developmental stages. METHODS: Parotid glands of fetal, neonatal and adult rats were prepared for morphologic and immunocytochemical study. The cellular distribution of RII was studied using light microscopic immunogold silver staining with anti-RII, and its intracellular distribution using electron microscopic immunogold labeling. RESULTS: In utero, parotid RII levels were low; 5-18 days after birth, labeling of secretory granules and cytoplasm rose to a peak, followed by a rapid decrease in both compartments at 25 days. At 60 days, granule labeling increased to levels near those at 18 days, whereas cytoplasmic labeling remained low. Nuclear labeling was highest during the first 3 weeks after birth, and then declined. CONCLUSIONS: The higher nuclear and cytoplasmic labeling during the neonatal period may reflect RII involvement in acinar cell differentiation. The accumulation of RII in secretory granules is similar to the pattern of the major salivary proteins, amylase and PSP. The redistribution of RII in these compartments during development may reflect changing gene expression patterns, and may be useful for identification of genetic or metabolic abnormalities.


Assuntos
Proteína Receptora de AMP Cíclico/análise , Proteína Quinase Tipo II Dependente de AMP Cíclico/análise , Glândula Parótida/enzimologia , Animais , Anticorpos Monoclonais/imunologia , Núcleo Celular/química , Citoplasma/química , Imuno-Histoquímica/métodos , Microscopia Eletrônica/métodos , Glândula Parótida/citologia , Glândula Parótida/crescimento & desenvolvimento , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...