Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172357, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614344

RESUMO

Per- and Polyfluoroalkyl substances (PFAS) have been widely used in various industries, including pesticide production, electroplating, packaging, paper making, and the manufacturing of water-resistant clothes. This study investigates the levels of PFAS in fish tissues collected from four target waterways (15 sampling points) in the northwestern part of Illinois during 2021-2022. To assess accumulation, concentrations of 17 PFAS compounds were evaluated in nine fish species to potentially inform on exposure risks to local sport fishing population via fish consumption. At least four PFAS (PFHxA, PFHxS, PFOS, and PFBS) were detected at each sampling site. The highest concentrations of PFAS were consistently found in samples from the Rock River, particularly in areas near urban and industrial activities. PFHxA emerged as the most accumulated PFAS in the year 2022, while PFBS and PFOS dominated in 2021. Channel Catfish exhibited the highest PFAS content across different fish species, indicating its bioaccumulation potential across the food chain. Elevated levels of PFOS were observed in nearly all fish, indicating the need for careful consideration of fish consumption. Additional bioaccumulation data in the future years is needed to shed light on the sources and PFAS accumulation potential in aquatic wildlife in relation to exposures for potential health risk assessment.


Assuntos
Monitoramento Ambiental , Peixes , Fluorocarbonos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Illinois , Peixes/metabolismo , Fluorocarbonos/análise
2.
Toxicol Rep ; 12: 280-288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38469334

RESUMO

We evaluate the cytotoxicity, intracellular redox conditions, apoptosis, and methylation of DNMTs/TETs upon exposure to LiTFSI, a novel Per and Polyfluoroalkyl Substances (PFAS) commonly found in lithium-ion batteries, on human renal carcinoma cells (A498) and hepatoma cells (HepG2). The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay showed both Perfluorooctane sulfonate (PFOS) and Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) had a dose-dependent effect on A498 and HepG2, with LiTFSI being less toxic. Intracellular redox conditions were assessed with a microplate reader and confocal, which showed a significant decrease in Reactive Oxygen Species (ROS) levels and an increase in Superoxide dismutase (SOD) content in both cells. Exposure to LiTFSI enhanced cell apoptosis, with HepG2 being more susceptible than A498. Quantitative analysis of mRNA expression levels of 19 genes associated with kidney injury, methylation, lipid metabolism and transportation was performed. LiTFSI exposure impacted kidney function by downregulating smooth muscle alpha-actin (Acta2) and upregulating transforming growth factor beta 1 (Tgfb1), B-cell lymphoma 2-like 1) Bcl2l1, hepatitis A virus cellular receptor 1 (Harvcr1), nuclear factor erythroid 2-like 2 (Nfe2l2), and hairy and enhancer of split 1 (Hes1) expression. LiTFSI exposure also affected the abundance of transcripts associated with DNA methylation by the expression of ten-eleven translocation (TET) and DNA methyltransferase (DNMT) genes. Furthermore, LiTFSI exposure induced an increase in lipid anabolism and alterations in lipid catabolism in HepG2. Our results provide new insight on the potential role of a new contaminant, LiTFSI in the regulation of oxidative stress, apoptosis and methylation in human renal carcinoma and hepatoma cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...