Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Gynecol Oncol Rep ; 53: 101381, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38584802

RESUMO

Introduction: Lynch syndrome is caused by a germline mutation in mismatch repair (MMR) genes, leading to the loss of expression of MMR heterodimers, either MLH1/PMS2 or MSH2/MSH6, or isolated loss of PMS2 or MSH6. Concurrent loss of both heterodimers is uncommon, and patients carrying pathogenic variants affecting different MMR genes are rare, leading to the lack of cancer screening recommendation for these patients.Case presentation:Here, we reported a female with a family history of Lynch syndrome with MLH1 c.676C > T mutation. She developed endometrial cancer at 37 years old, with loss of MLH1/PMS2 expression. Immunohistochemical staining on tumor samples incidentally detected the additional loss of MSH6 expression. Whole exome sequencing on genomic DNA from peripheral blood revealed MSH6 c.2731C > T mutation, which was confirmed to be inherited from her mother, who had an early-onset ascending colon cancer without cancer family history. Conclusion: This is a rare case of the Lynch syndrome harboring germline mutations simultaneously in two different MMR genes inherited from two families with Lynch syndrome. The diagnosis of endometrial cancer at the age less than 40 years is uncommon for Lynch syndrome-related endometrial cancer. This suggests an earlier cancer screening for patients carrying two MMR mutations.

2.
J Exp Clin Cancer Res ; 43(1): 65, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424547

RESUMO

BACKGROUND: Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS: In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS: In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS: CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.


Assuntos
Neoplasias , Proteínas de Junções Íntimas , Animais , Humanos , Camundongos , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Proteômica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas de Junções Íntimas/metabolismo
3.
J Transl Med ; 21(1): 731, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848862

RESUMO

BACKGROUND: Many methodologies for selecting histopathological images, such as sample image patches or segment histology from regions of interest (ROIs) or whole-slide images (WSIs), have been utilized to develop survival models. With gigapixel WSIs exhibiting diverse histological appearances, obtaining clinically prognostic and explainable features remains challenging. Therefore, we propose a novel deep learning-based algorithm combining tissue areas with histopathological features to predict cancer survival. METHODS: The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) dataset was used in this investigation. A deep convolutional survival model (DeepConvSurv) extracted histopathological information from the image patches of nine different tissue types, including tumors, lymphocytes, stroma, and mucus. The tissue map of the WSIs was segmented using image processing techniques that involved localizing and quantifying the tissue region. Six survival models with the concordance index (C-index) were used as the evaluation metrics. RESULTS: We extracted 128 histopathological features from four histological types and five tissue area features from WSIs to predict colorectal cancer survival. Our method performed better in six distinct survival models than the Whole Slide Histopathological Images Survival Analysis framework (WSISA), which adaptively sampled patches using K-means from WSIs. The best performance using histopathological features was 0.679 using LASSO-Cox. Compared to histopathological features alone, tissue area features increased the C-index by 2.5%. Based on histopathological features and tissue area features, our approach achieved performance of 0.704 with RIDGE-Cox. CONCLUSIONS: A deep learning-based algorithm combining histopathological features with tissue area proved clinically relevant and effective for predicting cancer survival.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Aprendizado Profundo , Humanos , Algoritmos , Processamento de Imagem Assistida por Computador
4.
Mol Carcinog ; 62(7): 951-962, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37014154

RESUMO

Sprouty2 (SPRY2) is known to inhibit the RAS/MAPK/ERK pathway, and is a potential study target for cancer. The effect of SPRY2 in colorectal cancer (CRC) and whether it is influenced by KRAS mutation are not known. We manipulated SPRY2 gene expression and used an activating KRAS-mutant plasmid to determine its effect on CRC cell function in vitro and/or in vivo. We performed SPRY2 immunohistochemical staining in 143 CRC specimens and analyzed the staining results with various clinicopathological characteristics in relation to KRAS mutation status. SPRY2 knockdown in Caco-2 cells carrying the wild-type (WT) KRAS gene upregulated phosphorylated ERK (p-ERK) levels and increased cell proliferation in vitro, but inhibited cell invasion. However, SPRY2 knockdown in SW480 cells (activating KRAS mutant) or Caco-2 cells transfected with KRAS-mutant plasmid did not significantly alter p-ERK levels, cell proliferation, or invasion. The xenografts of SPRY2-knockdown Caco-2 cells were larger with less deep muscle invasion than those of control cells. The clinical cohort study revealed a positive association of SPRY2 protein expression with pT status, lymphovascular invasion, and perineural invasion in KRAS-WT CRCs. However, the associations were not observed in KRAS-mutant CRCs. Interestingly, high SPRY2 expression was related to shorter cancer-specific survival in both KRAS-WT and KRAS-mutant CRC patients. Our study demonstrated the dual role of SPRY2 as an inhibitor of RAS/ERK-driven proliferation and as a promoter of cancer invasion in KRAS-WT CRC. SPRY2 may promote the invasion and progression of KRAS-WT CRC, and might also enhance KRAS-mutant CRC progression through pathways other than invasion.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Células CACO-2 , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Neoplasias Colorretais/patologia , Proliferação de Células , Mutação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
5.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 3267-3277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37027274

RESUMO

Automatic liver tumor detection from computed tomography (CT) makes clinical examinations more accurate. However, deep learning-based detection algorithms are characterized by high sensitivity and low precision, which hinders diagnosis given that false-positive tumors must first be identified and excluded. These false positives arise because detection models incorrectly identify partial volume artifacts as lesions, which in turn stems from the inability to learn the perihepatic structure from a global perspective. To overcome this limitation, we propose a novel slice-fusion method in which mining the global structural relationship between the tissues in the target CT slices and fusing the features of adjacent slices according to the importance of the tissues. Furthermore, we design a new network based on our slice-fusion method and Mask R-CNN detection model, called Pinpoint-Net. We evaluated proposed model on the Liver Tumor Segmentation Challenge (LiTS) dataset and our liver metastases dataset. Experiments demonstrated that our slice-fusion method not only enhance tumor detection ability via reducing the number of false-positive tumors smaller than 10mm, but also improve segmentation performance. Without bells and whistles, a single Pinpoint-Net showed outstanding performance in liver tumor detection and segmentation on LiTS test dataset compared with other state-of-the-art models.


Assuntos
Processamento de Imagem Assistida por Computador , Neoplasias Hepáticas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Neoplasias Hepáticas/diagnóstico por imagem , Abdome
6.
Hum Genomics ; 17(1): 18, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36879264

RESUMO

BACKGROUND: The metabolome is the best representation of cancer phenotypes. Gene expression can be considered a confounding covariate affecting metabolite levels. Data integration across metabolomics and genomics to establish the biological relevance of cancer metabolism is challenging. This study aimed to eliminate the confounding effect of metabolic gene expression to reflect actual metabolite levels in microsatellite instability (MSI) cancers. METHODS: In this study, we propose a new strategy using covariate-adjusted tensor classification in high dimensions (CATCH) models to integrate metabolite and metabolic gene expression data to classify MSI and microsatellite stability (MSS) cancers. We used datasets from the Cancer Cell Line Encyclopedia (CCLE) phase II project and treated metabolomic data as tensor predictors and data on gene expression of metabolic enzymes as confounding covariates. RESULTS: The CATCH model performed well, with high accuracy (0.82), sensitivity (0.66), specificity (0.88), precision (0.65), and F1 score (0.65). Seven metabolite features adjusted for metabolic gene expression, namely, 3-phosphoglycerate, 6-phosphogluconate, cholesterol ester, lysophosphatidylethanolamine (LPE), phosphatidylcholine, reduced glutathione, and sarcosine, were found in MSI cancers. Only one metabolite, Hippurate, was present in MSS cancers. The gene expression of phosphofructokinase 1 (PFKP), which is involved in the glycolytic pathway, was related to 3-phosphoglycerate. ALDH4A1 and GPT2 were associated with sarcosine. LPE was associated with the expression of CHPT1, which is involved in lipid metabolism. The glycolysis, nucleotide, glutamate, and lipid metabolic pathways were enriched in MSI cancers. CONCLUSIONS: We propose an effective CATCH model for predicting MSI cancer status. By controlling the confounding effect of metabolic gene expression, we identified cancer metabolic biomarkers and therapeutic targets. In addition, we provided the possible biology and genetics of MSI cancer metabolism.


Assuntos
Instabilidade de Microssatélites , Neoplasias , Humanos , Sarcosina , Ácidos Glicéricos , Neoplasias/genética , Biomarcadores Tumorais/genética , Expressão Gênica
7.
Eur J Cancer ; 181: 62-69, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640475

RESUMO

BACKGROUND: The association between human epidermal growth factor receptor-2 (HER2) amplification and brain metastasis (BM) in patients having colorectal cancer (CRC) has been suggested but not yet established. This study investigated the expression patterns of HER2, its association with BM, and its prognostic value in patients having CRC. METHODS: We retrospectively identified 99 patients having metastatic CRC (mCRC) and BM (the BM cohort) and compared them with a cohort of 249 patients having mCRC and without BM (the stage IV cohort) by propensity score matching. Immunohistochemical studies of HER2 on all available paraffin-embedded tumour samples, either from the primary tumour, the metastasis (brain and/or extracranial sites) or both, were performed and analysed. HER2 fluorescent in situ hybridisation was applied when necessary. The expression of HER2 was compared and correlated with survival. RESULTS: HER2 amplifications were detected in 16 (18.4%) of 87 and 9 (3.6%) of 249 patients who had specimens available in the BM and stage IV cohorts, respectively (P < .001). After propensity score matching, HER2 amplification was significantly associated with BM (odds ratio: 5.38, P = .003). HER2 heterogeneity was frequently observed not only at the single tumour level but also in paired tumour samples. A marginally significant longer survival since BM was found in patients having HER2-amplified mCRC than in those without (P = .07). CONCLUSIONS: HER2 amplification was significantly associated with BM in patients having mCRC and might have prognostic value for survival since BM. Given the heterogeneity of HER2 expression, the testing of HER2 status on available tissues from both primary and metastatic tumours should be encouraged.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Humanos , Estudos Retrospectivos , Pontuação de Propensão , Receptor ErbB-2/metabolismo , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/secundário
8.
BMC Palliat Care ; 22(1): 4, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609269

RESUMO

BACKGROUND: Limited efficacy has been observed when using opioids to treat neuropathic pain. Lidocaine patches reduce neuropathic pain in postherpetic neuralgia, but their benefits for cancer-related neuropathic pain remain unclear. This study aimed to investigate a treatment for cancer-related neuropathic pain. METHODS: We conducted a prospective, open-label, single-arm study to assess the efficacy and safety of lidocaine transdermal patches in patients experiencing localized, superficial, neuropathic cancer pain. Terminal cancer patients already receiving opioid treatment participated in the 3-day study. The primary endpoint was pain intensity evaluated by the numerical rating scale (NRS). The secondary endpoints were the pain relief score and the quality of analgesic treatment. RESULTS: The results showed a significant difference in the median NRS over 3 days (Kruskal-Wallis test, p < 0.0001). The median NRS pain intensity from Day 1 to Day 3 was 4.0 with 95% C.I. (3.3, 5.0), 3.0 (2.5, 3.5), and 2.6 (2.0, 3.0), respectively. The difference between the median NRS pain intensities of any 2 days was significant (Wilcoxon signed-rank test, p < 0.0001). The generalized estimating equation (GEE) estimation model showed significant differences between the NRS pain intensities on any 2 days. There was no significant difference in the pain relief score or the quality of analgesic treatment. CONCLUSIONS: In this study, the 5% lidocaine transdermal patch reduced the NRS pain intensity in neuropathic cancer patients already receiving opioid treatment. Treatment of localized and superficial neuropathic pain caused by cancer was well tolerated and effective.


Assuntos
Neoplasias , Neuralgia , Humanos , Lidocaína/uso terapêutico , Lidocaína/efeitos adversos , Analgésicos Opioides/uso terapêutico , Medição da Dor , Estudos Prospectivos , Adesivo Transdérmico , Neuralgia/etiologia , Neuralgia/induzido quimicamente , Analgésicos/uso terapêutico , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Resultado do Tratamento
9.
Artigo em Inglês | MEDLINE | ID: mdl-34962874

RESUMO

The most popular tools for predicting pathogenicity of single amino acid variants (SAVs) were developed based on sequence-based techniques. SAVs may change protein structure and function. In the context of van der Waals force and disulfide bridge calculations, no method directly predicts the impact of mutations on the energies of the protein structure. Here, we combined machine learning methods and energy scores of protein structures calculated by Rosetta Energy Function 2015 to predict SAV pathogenicity. The accuracy level of our model (0.76) is higher than that of six prediction tools. Further analyses revealed that the differential reference energies, attractive energies, and solvation of polar atoms between wildtype and mutant side-chains played essential roles in distinguishing benign from pathogenic variants. These features indicated the physicochemical properties of amino acids, which were observed in 3D structures instead of sequences. We added 16 features to Rhapsody (the prediction tool we used for our data set) and consequently improved its performance. The results indicated that these energy scores were more appropriate and more detailed representations of the pathogenicity of SAVs.


Assuntos
Aminoácidos , Proteínas , Aminoácidos/química , Virulência , Proteínas/química , Mutação/genética , Termodinâmica
10.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362062

RESUMO

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule that can regulate immune responses in the tumor microenvironment (TME); however, the clinical applications of PD-L1 in early-stage colorectal cancer (CRC) remain unclear. In this study, we aimed to investigate the relationship between PD-L1 expression and survival outcome and explore its relevant immune responses in CRC. PD-L1 expression was evaluated by immunohistochemical staining to determine the tumor proportion score and combined positive score (CPS) in a Taiwanese CRC cohort. The oncomine immune response research assay was conducted for immune gene expression analyses. CRC datasets from the TCGA database were reappraised for PD-L1-associated gene enrichment analyses using GSEA. The high expression of PD-L1 (CPS ≥ 5) was associated with longer recurrence-free survival (p = 0.031) and was an independent prognostic factor as revealed by multivariate analysis. High PD-L1 expression was related to six immune-related gene signatures, and CXCL9 is the most significant overexpressed gene in differential analyses. High CXCL9 expression correlated with increased infiltration levels of immune cells in the TME, including CD8+ T lymphocytes and M1 macrophages. These findings suggest that high PD-L1 expression is a prognostic factor of early-stage CRC, and CXCL9 may play a key role in regulating PD-L1 expression.


Assuntos
Antígeno B7-H1 , Neoplasias Colorretais , Humanos , Antígeno B7-H1/metabolismo , Linfócitos do Interstício Tumoral , Microambiente Tumoral/genética , Neoplasias Colorretais/patologia
11.
Comput Struct Biotechnol J ; 20: 5287-5295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212540

RESUMO

Synthetic lethality (SL) is an emerging therapeutic paradigm in cancer. We introduced a different approach to prioritize SL gene pairs through literature mining and RAS-mutant high-throughput screening (HTS) data. We matched essential genes from text-mining and mutant genes from the COSMIC and CCLE HTS datasets to build a prediction model of SL gene pairs. CCLE gene expression data were used to enrich the essential-mutant SL gene pairs using Spearman's correlation coefficient and literature mining. In total, 223 essential trigger terms were extracted and ranked. The threshold of the essential gene score ( S g ) was set to 10. We identified 586 genes essential for the SL prediction model of colon cancer. Seven essential RAS-mutant SL gene pairs were identified in our model, including CD82-KRAS/NRAS, PEBP1-NRAS, MT-CO2-HRAS, IFI27-NRAS/KRAS, and SUMO1-HRAS gene pairs. Using RAS-mutant HTS data validation, we identified two potential SL gene pairs, including the CD82 (essential gene)-KRAS (mutant gene) pair and CD82-NRAS pair in the DLD-1 colon cancer cell line (Spearman's correlation p-values = 0.004786 and 0.00249, respectively). Based on further annotations by PubChem, we observed that digitonin targeted the complex comprising CD82, especially in KRAS-mutated HCT116 cancer cells. Moreover, we experimentally demonstrated that CD82 exhibited selective vulnerability in KRAS-mutant colorectal cancer. We used literature mining and HTS data to identify candidates for SL targets for RAS-mutant colon cancer.

12.
Biomolecules ; 12(8)2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-36009026

RESUMO

To provide precision medicine for better cancer care, researchers must work on clinical patient data, such as electronic medical records, physiological measurements, biochemistry, computerized tomography scans, digital pathology, and the genetic landscape of cancer tissue. To interpret big biodata in cancer genomics, an operational flow based on artificial intelligence (AI) models and medical management platforms with high-performance computing must be set up for precision cancer genomics in clinical practice. To work in the fast-evolving fields of patient care, clinical diagnostics, and therapeutic services, clinicians must understand the fundamentals of the AI tool approach. Therefore, the present article covers the following four themes: (i) computational prediction of pathogenic variants of cancer susceptibility genes; (ii) AI model for mutational analysis; (iii) single-cell genomics and computational biology; (iv) text mining for identifying gene targets in cancer; and (v) the NVIDIA graphics processing units, DRAGEN field programmable gate arrays systems and AI medical cloud platforms in clinical next-generation sequencing laboratories. Based on AI medical platforms and visualization, large amounts of clinical biodata can be rapidly copied and understood using an AI pipeline. The use of innovative AI technologies can deliver more accurate and rapid cancer therapy targets.


Assuntos
Neoplasias , Medicina de Precisão , Inteligência Artificial , Biologia Computacional/métodos , Mineração de Dados , Genômica/métodos , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão/métodos
13.
Br J Cancer ; 127(9): 1615-1628, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35999268

RESUMO

BACKGROUND: Colorectal cancer (CRC), the most common cancer type, causes high morbidity and mortality. Patients who develop drug resistance to oxaliplatin-based regimens have short overall survival. Thus, identifying molecules involved in the development of oxaliplatin resistance is critical for designing therapeutic strategies. METHODS: A proteomic screen was performed to reveal altered protein kinase phosphorylation in oxaliplatin-resistant (OR) CRC tumour spheroids. The function of CHK2 was characterised using several biochemical techniques and evident using in vitro cell and in vivo tumour models. RESULTS: We revealed that the level of phospho-CHK2(Thr68) was elevated in OR CRC cells and in ~30% of tumour samples from patients with OR CRC. We demonstrated that oxaliplatin activated several phosphatidylinositol 3-kinase-related kinases (PIKKs) and CHK2 downstream effectors and enhanced CHK2/PARP1 interaction to facilitate DNA repair. A phosphorylation mimicking CHK2 mutant, CHK2T68D, but not a kinase-dead CHK2 mutant, CHK2D347A, promoted DNA repair, the CHK2/PARP1 interaction, and cell growth in the presence of oxaliplatin. Finally, we showed that a CHK2 inhibitor, BML-277, reduced protein poly(ADP-ribosyl)ation (PARylation), FANCD2 monoubiquitination, homologous recombination and OR CRC cell growth in vitro and in vivo. CONCLUSION: Our findings suggest that CHK2 activity is critical for modulating oxaliplatin response and that CHK2 is a potential therapeutic target for OR CRC.


Assuntos
Quinase do Ponto de Checagem 2 , Neoplasias Colorretais , Proteômica , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Fosfatidilinositol 3-Quinases , Proteínas Quinases , Quinase do Ponto de Checagem 2/metabolismo
14.
Cancers (Basel) ; 14(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454802

RESUMO

To evaluate whether adjusted computed tomography (CT) scan image-based radiomics combined with immune genomic expression can achieve accurate stratification of cancer recurrence and identify potential therapeutic targets in stage III colorectal cancer (CRC), this cohort study enrolled 71 patients with postoperative stage III CRC. Based on preoperative CT scans, radiomic features were extracted and selected to build pixel image data using covariate-adjusted tensor classification in the high-dimension (CATCH) model. The differentially expressed RNA genes, as radiomic covariates, were identified by cancer recurrence. Predictive models were built using the pixel image and immune genomic expression factors, and the area under the curve (AUC) and F1 score were used to evaluate their performance. Significantly adjusted radiomic features were selected to predict recurrence. The association between the significantly adjusted radiomic features and immune gene expression was also investigated. Overall, 1037 radiomic features were converted into 33 × 32-pixel image data. Thirty differentially expressed genes were identified. We performed 100 iterations of 3-fold cross-validation to evaluate the performance of the CATCH model, which showed a high sensitivity of 0.66 and an F1 score of 0.69. The area under the curve (AUC) was 0.56. Overall, ten adjusted radiomic features were significantly associated with cancer recurrence in the CATCH model. All of these methods are texture-associated radiomics. Compared with non-adjusted radiomics, 7 out of 10 adjusted radiomic features influenced recurrence-free survival. The adjusted radiomic features were positively associated with PECAM1, PRDM1, AIF1, IL10, ISG20, and TLR8 expression. We provide individualized cancer therapeutic strategies based on adjusted radiomic features in recurrent stage III CRC. Adjusted CT scan image-based radiomics with immune genomic expression covariates using the CATCH model can efficiently predict cancer recurrence. The correlation between adjusted radiomic features and immune genomic expression can provide biological relevance and individualized therapeutic targets.

15.
Dis Markers ; 2022: 1819841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392497

RESUMO

Sarcopenia is defined as the loss of skeletal muscle mass and muscle function. It is common in patients with malignancies and often associated with adverse clinical outcomes. The presence of sarcopenia in patients with cancer is determined by body composition, and recently, radiologic technology for the accurate estimation of body composition is under development. Artificial intelligence- (AI-) assisted image measurement facilitates the detection of sarcopenia in clinical practice. Sarcopenia is a prognostic factor for patients with cancer, and confirming its presence helps to recognize those patients at the greatest risk, which provides a guide for designing individualized cancer treatments. In this review, we examine the recent literature (2017-2021) on AI-assisted image assessment of body composition and sarcopenia, seeking to synthesize current information on the mechanism and the importance of sarcopenia, its diagnostic image markers, and the interventions for sarcopenia in the medical care of patients with cancer. We concluded that AI-assisted image analysis is a reliable automatic technique for segmentation of abdominal adipose tissue. It has the potential to improve diagnosis of sarcopenia and facilitates identification of oncology patients at the greatest risk, supporting individualized prevention planning and treatment evaluation. The capability of AI approaches in analyzing series of big data and extracting features beyond manual skills would no doubt progressively provide impactful information and greatly refine the standard for assessing sarcopenia risk in patients with cancer.


Assuntos
Neoplasias , Sarcopenia , Inteligência Artificial , Composição Corporal , Humanos , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Neoplasias/complicações , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Sarcopenia/diagnóstico por imagem , Sarcopenia/etiologia
16.
J Formos Med Assoc ; 121(9): 1872-1876, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35321820

RESUMO

Acquired hemophilia is a rare disease resulting from autoantibodies against endogenous factor VIII (FVIII), which associates with bleeding and a high mortality rate. The pathophysiology is still unclear. Recent studies suggest genetic and environmental factors trigger the breakdown of immune tolerance. We report a 77-year-old Taiwanese man presented with multiple ecchymoses and some hemorrhagic blisters three weeks after SARS-CoV-2 mRNA (Moderna) vaccination. Isolated activated partial thromboplastin time (aPTT) prolongation was found. Acquired hemophilia A (AHA) was confirmed by low factor VIII (FVIII) activity and high titer of FVIII inhibitor. The pathohistology of skin biopsy further supported the concomitant diagnosis of bullous pemphigoid. To date, 6 cases of acquired hemophilia A following SARS-CoV-2 mRNA vaccination were reported worldwide. We reviewed and summarized the characteristics of these cases. We also discussed the rare finding of concomitant acquired hemophilia A and bullous pemphigoid. Bullous pemphigoid results from autoantibody against epithelial basement membrane zone of skin. In this article, we proposed possibility of SARS-CoV-2 mRNA vaccine associated autoimmunity against FVIII and epithelial basement membrane zone.


Assuntos
COVID-19 , Hemofilia A , Penfigoide Bolhoso , Idoso , Autoanticorpos , Vacinas contra COVID-19 , Fator VIII , Humanos , Masculino , RNA Mensageiro , SARS-CoV-2 , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
17.
Biomedicines ; 10(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35203549

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most prevalent malignant diseases worldwide. Risk prediction for tumor recurrence is important for making effective treatment decisions and for the survival outcomes of patients with CRC after surgery. Herein, we aimed to explore a prediction algorithm and the risk factors for postoperative tumor recurrence using a machine learning (ML) approach with standardized pathology reports for patients with stage II and III CRC. METHODS: Pertinent clinicopathological features were compiled from medical records and standardized pathology reports of patients with stage II and III CRC. Four ML models based on logistic regression (LR), random forest (RF), classification and regression decision trees (CARTs), and support vector machine (SVM) were applied for the development of the prediction algorithm. The area under the curve (AUC) of the ML models was determined in order to compare the prediction accuracy. Genomic studies were performed using a panel-targeted next-generation sequencing approach. RESULTS: A total of 1073 patients who received curative intent surgery at the National Cheng Kung University Hospital between January 2004 and January 2019 were included. Based on conventional statistical methods, chemotherapy (p = 0.003), endophytic tumor configuration (p = 0.008), TNM stage III disease (p < 0.001), pT4 (p < 0.001), pN2 (p < 0.001), increased numbers of lymph node metastases (p < 0.001), higher lymph node ratios (LNR) (p < 0.001), lymphovascular invasion (p < 0.001), perineural invasion (p < 0.001), tumor budding (p = 0.004), and neoadjuvant chemoradiotherapy (p = 0.025) were found to be correlated with the tumor recurrence of patients with stage II-III CRC. While comparing the performance of different ML models for predicting cancer recurrence, the AUCs for LR, RF, CART, and SVM were found to be 0.678, 0.639, 0.593, and 0.581, respectively. The LR model had a better accuracy value of 0.87 and a specificity value of 1 in the testing set. Two prognostic factors, age and LNR, were selected by multivariable analysis and the four ML models. In terms of age, older patients received fewer cycles of chemotherapy and radiotherapy (p < 0.001). Right-sided colon tumors (p = 0.002), larger tumor sizes (p = 0.008) and tumor volumes (p = 0.049), TNM stage II disease (p < 0.001), and advanced pT3-4 stage diseases (p = 0.04) were found to be correlated with the older age of patients. However, pN2 diseases (p = 0.005), lymph node metastasis number (p = 0.001), LNR (p = 0.004), perineural invasion (p = 0.018), and overall survival rate (p < 0.001) were found to be decreased in older patients. Furthermore, PIK3CA and DNMT3A mutations (p = 0.032 and 0.039, respectively) were more frequently found in older patients with stage II-III CRC compared to their younger counterparts. CONCLUSIONS: This study demonstrated that ML models have a comparable predictive power for determining cancer recurrence in patients with stage II-III CRC after surgery. Advanced age and high LNR were significant risk factors for cancer recurrence, as determined by ML algorithms and multivariable analyses. Distinctive genomic profiles may contribute to discrete clinical behaviors and survival outcomes between patients of different age groups. Studies incorporating complete molecular and genomic profiles in cancer prediction models are beneficial for patients with stage II-III CRC.

18.
Diagnostics (Basel) ; 12(2)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35204406

RESUMO

The impact of germline variants on the regulation of the expression of tumor microenvironment (TME)-based immune response genes remains unclear. Expression quantitative trait loci (eQTL) provide insight into the effect of downstream target genes (eGenes) regulated by germline-associated variants (eVariants). Through eQTL analyses, we illustrated the relationships between germline eVariants, TME-based immune response eGenes, and clinical outcomes. In this study, both RNA sequencing data from primary tumor and germline whole-genome sequencing data were collected from patients with stage III colorectal cancer (CRC). Ninety-nine high-risk subjects were subjected to immune response gene expression analyses. Seventy-seven subjects remained for further analysis after quality control, of which twenty-two patients (28.5%) experienced tumor recurrence. We found that 65 eQTL, including 60 germline eVariants and 22 TME-based eGenes, impacted the survival of cancer patients. For the recurrence prediction model, 41 differentially expressed genes (DEGs) achieved the best area under the receiver operating characteristic curve of 0.93. In total, 19 survival-associated eGenes were identified among the DEGs. Most of these genes were related to the regulation of lymphocytes and cytokines. A high expression of HGF, CCR5, IL18, FCER1G, TDO2, IFITM2, and LAPTM5 was significantly associated with a poor prognosis. In addition, the FCER1G eGene was associated with tumor invasion, tumor nodal stage, and tumor site. The eVariants that regulate the TME-based expression of FCER1G, including rs2118867 and rs12124509, were determined to influence survival and chromatin binding preferences. We also demonstrated that FCER1G and co-expressed genes in TME were related to the aggregation of leukocytes via pathway analysis. By analyzing the eQTL from the cancer genome using germline variants and TME-based RNA sequencing, we identified the eQTL in immune response genes that impact colorectal cancer characteristics and survival.

19.
Breast Cancer Res Treat ; 192(3): 629-637, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35113257

RESUMO

PURPOSE: Breast cancer is increasing around the globe, including Asia. We aimed to examine the survival and risk of contralateral breast cancer (CBC) in Asian breast cancer patients with BRCA mutations. METHODS: A total of 128 breast cancer patients with germline BRCA mutations and 4,754 control breast cancer patients were enrolled. Data on clinical-pathologic characteristics, survival, and CBC were collected from the medical record. The rates of survival and CBC were estimated by Kaplan-Meier method. RESULTS: The mean age of onset in BRCA mutation carriers was significantly younger than control patients (BRCA vs. Non-BRCA: 43.9 vs. 53.2 years old). BRCA mutation carriers had a higher proportion of triple-negative breast cancer (TNBC) (52%) than control patients (12%, p < 0.001). The risk of CBC was significantly higher in BRCA mutation patients than in control cases (hazard ratio (HR) = 3.95, 95% CI 2.71-5.75); when stratified by genotype, the HRs (95%CI) were 4.84 (3.00-7.82) for BRCA1 and 3.13 (1.78-5.49) for BRCA2 carriers, respectively. Moreover, BRCA1 mutation patients with triple-negative breast cancer (TNBC) as their first breast cancer had the highest risk of CBC (HR = 5.55, 95% CI 3.29-9.34). However, we did not observe any differences in relapse-free survival and overall survival between mutation carriers and control patients. CONCLUSION: Our study suggest that BRCA patients had a significantly higher risk of developing CBC, particularly for BRCA1 mutation carriers with TNBC as the first breast cancer.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Adulto , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Feminino , Mutação em Linhagem Germinativa , Heterozigoto , Humanos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/mortalidade
20.
NPJ Prim Care Respir Med ; 32(1): 2, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027570

RESUMO

The primary barrier to initiating palliative care for advanced COPD patients is the unpredictable course of the disease. We enroll 752 COPD patients into the study and validate the prediction tools for 1-year mortality using the current guidelines for palliative care. We also develop a composite prediction index for 1-year mortality and validate it in another cohort of 342 patients. Using the current prognostic models for recent mortality in palliative care, the best area under the curve (AUC) for predicting mortality is 0.68. Using the Modified Medical Research Council dyspnea score and oxygen saturation to define the combined dyspnea and oxygenation (DO) index, we find that the AUC of the DO index is 0.84 for predicting mortality in the validated cohort. Predictions of 1-year mortality based on the current palliative care guideline for COPD patients are poor. The DO index exhibits better predictive ability than other models in the study.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Área Sob a Curva , Estudos de Coortes , Dispneia , Humanos , Cuidados Paliativos , Doença Pulmonar Obstrutiva Crônica/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...