Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 88(22): 13073-85, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187548

RESUMO

UNLABELLED: The p143 gene from Autographa californica multinucleocapsid nucleopolyhedrovirus (AcMNPV) has been found to increase the expression of luciferase, which is driven by the polyhedrin gene promoter, in a plasmid with virus coinfection. Further study indicated that this is due to the presence of a replication origin (ori) in the coding region of this gene. Transient DNA replication assays showed that a specific fragment of the p143 coding sequence, p143-3, underwent virus-dependent DNA replication in Spodoptera frugiperda IPLB-Sf-21 (Sf-21) cells. Deletion analysis of the p143-3 fragment showed that subfragment p143-3.2a contained the essential sequence of this putative ori. Sequence analysis of this region revealed a unique distribution of imperfect palindromes with high AT contents. No sequence homology or similarity between p143-3.2a and any other known ori was detected, suggesting that it is a novel baculovirus ori. Further study showed that the p143-3.2a ori can replicate more efficiently in infected Sf-21 cells than baculovirus homologous regions (hrs), the major baculovirus ori, or non-hr oris during virus replication. Previously, hr on its own was unable to replicate in mammalian cells, and for mammalian viral oris, viral proteins are generally required for their proper replication in host cells. However, the p143-3.2a ori was, surprisingly, found to function as an efficient ori in mammalian cells without the need for any viral proteins. We conclude that p143 contains a unique sequence that can function as an ori to enhance gene expression in not only insect cells but also mammalian cells. IMPORTANCE: Baculovirus DNA replication relies on both hr and non-hr oris; however, so far very little is known about the latter oris. Here we have identified a new non-hr ori, the p143 ori, which resides in the coding region of p143. By developing a novel DNA replication-enhanced reporter system, we have identified and located the core region required for the p143 ori. This ori contains a large number of imperfect inverted repeats and is the most active ori in the viral genome during virus infection in insect cells. We also found that it is a unique ori that can replicate in mammalian cells without the assistance of baculovirus gene products. The identification of this ori should contribute to a better understanding of baculovirus DNA replication. Also, this ori is very useful in assisting with gene expression in mammalian cells.


Assuntos
Baculoviridae/genética , Replicação do DNA , Origem de Replicação , Animais , Linhagem Celular , Análise Mutacional de DNA , Insetos , Mamíferos , Deleção de Sequência
2.
Biochem Biophys Res Commun ; 318(4): 833-8, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15147946

RESUMO

Viral particles of human severe acute respiratory syndrome coronavirus (SARS CoV) consist of three virion structural proteins, including spike protein, membrane protein, and envelope protein. In this report, virus-like particles were assembled in insect cells by the co-infection with recombinant baculoviruses, which separately express one of these three virion proteins. We found that the membrane and envelope proteins are sufficient for the efficient formation of virus-like particles and could be visualized by electron microscopy. Sucrose gradient purification followed by Western blot analysis and immunogold labeling showed that the spike protein could be incorporated into the virus like particle also. The construction of engineered virus-like particles bearing resemblance to the authentic one is an important step towards the development of an effective vaccine against infection of SARS CoV.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteínas do Envelope Viral/ultraestrutura , Animais , Baculoviridae/metabolismo , Linhagem Celular , Expressão Gênica , Humanos , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/ultraestrutura , Microscopia Eletrônica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestrutura , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Glicoproteína da Espícula de Coronavírus , Spodoptera/citologia , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...