Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4907, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851760

RESUMO

Perovskite/silicon tandem solar cells hold great promise for realizing high power conversion efficiency at low cost. However, achieving scalable fabrication of wide-bandgap perovskite (~1.68 eV) in air, without the protective environment of an inert atmosphere, remains challenging due to moisture-induced degradation of perovskite films. Herein, this study reveals that the extent of moisture interference is significantly influenced by the properties of solvent. We further demonstrate that n-Butanol (nBA), with its low polarity and moderate volatilization rate, not only mitigates the detrimental effects of moisture in air during scalable fabrication but also enhances the uniformity of perovskite films. This approach enables us to achieve an impressive efficiency of 29.4% (certified 28.7%) for double-sided textured perovskite/silicon tandem cells featuring large-size pyramids (2-3 µm) and 26.3% over an aperture area of 16 cm2. This advance provides a route for large-scale production of perovskite/silicon tandem solar cells, marking a significant stride toward their commercial viability.

2.
Small ; : e2402338, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38924259

RESUMO

A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.

3.
Science ; 383(6685): 855-859, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38386724

RESUMO

Scalable fabrication of all-perovskite tandem solar cells is challenging because the narrow-bandgap subcells made of mixed lead-tin (Pb-Sn) perovskite films suffer from nonuniform crystallization and inferior buried perovskite interfaces. We used a dopant from Good's list of biochemical buffers, aminoacetamide hydrochloride, to homogenize perovskite crystallization and used it to extend the processing window for blade-coating Pb-Sn perovskite films and to selectively passivate defects at the buried perovskite interface. The resulting all-perovskite tandem solar module exhibited a certified power conversion efficiency of 24.5% with an aperture area of 20.25 square centimeters.

4.
Adv Mater ; 36(2): e2308706, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983869

RESUMO

All-perovskite tandem solar cells offer the potential to surpass the Shockley-Queisser (SQ) limit efficiency of single-junction solar cells while maintaining the advantages of low-cost and high-productivity solution processing. However, scalable solution processing of electron transport layer (ETL) in p-i-n structured perovskite solar subcells remains challenging due to the rough perovskite film surface and energy level mismatch between ETL and perovskites. Here, scalable solution processing of hybrid fullerenes (HF) with blade-coating on both wide-bandgap (≈1.80 eV) and narrow-bandgap (≈1.25 eV) perovskite films in all-perovskite tandem solar modules is developed. The HF, comprising a mixture of fullerene (C60 ), phenyl C61 butyric acid methyl ester, and indene-C60 bisadduct, exhibits improved conductivity, superior energy level alignment with both wide- and narrow-bandgap perovskites, and reduced interfacial nonradiative recombination when compared to the conventional thermal-evaporated C60 . With scalable solution-processed HF as the ETLs, the all-perovskite tandem solar modules achieve a champion power conversion efficiency of 23.3% (aperture area = 20.25 cm2 ). This study paves the way to all-solution processing of low-cost and high-efficiency all-perovskite tandem solar modules in the future.

5.
Angew Chem Int Ed Engl ; 62(51): e202313374, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37921234

RESUMO

Combining wide-band gap (WBG) and narrow-band gap (NBG) perovskites with interconnecting layers (ICLs) to construct monolithic all-perovskite tandem solar cell is an effective way to achieve high power conversion efficiency (PCE). However, optical losses from ICLs need to be further reduced to leverage the full potential of all-perovskite tandem solar cells. Here, metal oxide nanocrystal layers anchored with carbazolyl hole-selective-molecules (CHs), which exhibit much lower optical loss, is employed to replace poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT : PSS) as the hole transporting layers (HTLs) in lead-tin (Pb-Sn) perovskite sub-cells and ICLs in all-perovskite tandem solar cells. Optically transparent indium tin oxide nanocrystals (ITO NCs) layers are employed to enhance anchoring of CHs, while a mixture of two CHs is adopted to tune the surface energy-levels of ITO NCs. The optimized mixed Pb-Sn NBG perovskite solar cells demonstrate a high PCE of 23.2 %, with a high short-circuit current density (Jsc ) of 33.5 mA cm-2 . A high PCE of 28.1 % is further obtained in all-perovskite tandem solar cells, with the highest Jsc of 16.7 mA cm-2 to date. Encapsulated tandem solar cells maintain 90 % of their reference point after 500 h of operation at the maximum power point (MPP) under 1-Sun illumination.

6.
Nat Commun ; 14(1): 7118, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932289

RESUMO

Light-induced halide segregation constrains the photovoltaic performance and stability of wide-bandgap perovskite solar cells and tandem cells. The implementation of an intermixed two-dimensional/three-dimensional heterostructure via solution post-treatment is a typical strategy to improve the efficiency and stability of perovskite solar cells. However, owing to the composition-dependent sensitivity of surface reconstruction, the conventional solution post-treatment is suboptimal for methylammonium-free and cesium/bromide-enriched wide-bandgap PSCs. To address this, we develop a generic three-dimensional to two-dimensional perovskite conversion approach to realize a preferential growth of wider dimensionality (n ≥ 2) atop wide-bandgap perovskite layers (1.78 eV). This technique involves depositing a well-defined MAPbI3 thin layer through a vapor-assisted two-step process, followed by its conversion into a two-dimensional structure. Such a two-dimensional/three-dimensional heterostructure enables suppressed light-induced halide segregation, reduced non-radiative interfacial recombination, and facilitated charge extraction. The wide-bandgap perovskite solar cells demonstrate a champion power conversion efficiency of 19.6% and an open-circuit voltage of 1.32 V. By integrating with the thermal-stable FAPb0.5Sn0.5I3 narrow-bandgap perovskites, our all-perovskite tandem solar cells exhibit a stabilized PCE of 28.1% and retain 90% of the initial performance after 855 hours of continuous 1-sun illumination.

7.
Nature ; 620(7976): 994-1000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37290482

RESUMO

All-perovskite tandem solar cells promise higher power-conversion efficiency (PCE) than single-junction perovskite solar cells (PSCs) while maintaining a low fabrication cost1-3. However, their performance is still largely constrained by the subpar performance of mixed lead-tin (Pb-Sn) narrow-bandgap (NBG) perovskite subcells, mainly because of a high trap density on the perovskite film surface4-6. Although heterojunctions with intermixed 2D/3D perovskites could reduce surface recombination, this common strategy induces transport losses and thereby limits device fill factors (FFs)7-9. Here we develop an immiscible 3D/3D bilayer perovskite heterojunction (PHJ) with type II band structure at the Pb-Sn perovskite-electron-transport layer (ETL) interface to suppress the interfacial non-radiative recombination and facilitate charge extraction. The bilayer PHJ is formed by depositing a layer of lead-halide wide-bandgap (WBG) perovskite on top of the mixed Pb-Sn NBG perovskite through a hybrid evaporation-solution-processing method. This heterostructure allows us to increase the PCE of Pb-Sn PSCs having a 1.2-µm-thick absorber to 23.8%, together with a high open-circuit voltage (Voc) of 0.873 V and a high FF of 82.6%. We thereby demonstrate a record-high PCE of 28.5% (certified 28.0%) in all-perovskite tandem solar cells. The encapsulated tandem devices retain more than 90% of their initial performance after 600 h of continuous operation under simulated one-sun illumination.

8.
Nat Commun ; 14(1): 1819, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002238

RESUMO

The commonly-used superstrate configuration (depositing front subcell first and then depositing back subcell) in all-perovskite tandem solar cells is disadvantageous for long-term stability due to oxidizable narrow-bandgap perovskite assembled last and easily exposable to air. Here we reverse the processing order and demonstrate all-perovskite tandems in a substrate configuration (depositing back subcell first and then depositing front subcell) to bury oxidizable narrow-bandgap perovskite deep in the device stack. By using guanidinium tetrafluoroborate additive in wide-bandgap perovskite subcell, we achieve an efficiency of 25.3% for the substrate-configured all-perovskite tandem cells. The unencapsulated devices exhibit no performance degradation after storage in dry air for 1000 hours. The substrate configuration also widens the choice of flexible substrates: we achieve 24.1% and 20.3% efficient flexible all-perovskite tandem solar cells on copper-coated polyethylene naphthalene and copper metal foil, respectively. Substrate configuration offers a promising route to unleash the commercial potential of all-perovskite tandem solar cells.

9.
Science ; 376(6594): 762-767, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549402

RESUMO

Challenges in fabricating all-perovskite tandem solar cells as modules rather than as single-junction configurations include growing high-quality wide-bandgap perovskites and mitigating irreversible degradation caused by halide and metal interdiffusion at the interconnecting contacts. We demonstrate efficient all-perovskite tandem solar modules using scalable fabrication techniques. By systematically tuning the cesium ratio of a methylammonium-free 1.8-electron volt mixed-halide perovskite, we improve the homogeneity of crystallization for blade-coated films over large areas. An electrically conductive conformal "diffusion barrier" is introduced between interconnecting subcells to improve the power conversion efficiency (PCE) and stability of all-perovskite tandem solar modules. Our tandem modules achieve a certified PCE of 21.7% with an aperture area of 20 square centimeters and retain 75% of their initial efficiency after 500 hours of continuous operation under simulated 1-sun illumination.

10.
Adv Mater ; 34(26): e2110356, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35439839

RESUMO

Wide-bandgap (WBG, ≈1.8 eV) perovskite is a crucial component to pair with narrow-bandgap perovskite in low-cost monolithic all-perovskite tandem solar cells. However, the stability and efficiency of WBG perovskite solar cells (PSCs) are constrained by the light-induced halide segregation and by the large photovoltage deficit. Here, a steric engineering to obtain high-quality and photostable WBG perovskites (≈1.8 eV) suitable for all-perovskite tandems is reported. By alloying dimethylammonium and chloride into the mixed-cation mixed-halide perovskites, wide bandgaps are obtained with much lower bromide contents while the lattice strain and trap densities are simultaneously minimized. The WBG PSCs exhibit considerably improved performance and photostability, retaining >90% of their initial efficiencies after 1000 h of operation at maximum power point. With the triple-cation/triple-halide WBG perovskites enabled by steric engineering, a stabilized power conversion efficiency of 26.0% in all-perovskite tandem solar cells is further obtained. The strategy provides an avenue to fabricate efficient and stable WBG subcells for multijunction photovoltaic devices.

11.
Nature ; 603(7899): 73-78, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038717

RESUMO

All-perovskite tandem solar cells hold the promise of surpassing the efficiency limits of single-junction solar cells1-3; however, until now, the best-performing all-perovskite tandem solar cells have exhibited lower certified efficiency than have single-junction perovskite solar cells4,5. A thick mixed Pb-Sn narrow-bandgap subcell is needed to achieve high photocurrent density in tandem solar cells6, yet this is challenging owing to the short carrier diffusion length within Pb-Sn perovskites. Here we develop ammonium-cation-passivated Pb-Sn perovskites with long diffusion lengths, enabling subcells that have an absorber thickness of approximately 1.2 µm. Molecular dynamics simulations indicate that widely used phenethylammonium cations are only partially adsorbed on the surface defective sites at perovskite crystallization temperatures. The passivator adsorption is predicted to be enhanced using 4-trifluoromethyl-phenylammonium (CF3-PA), which exhibits a stronger perovskite surface-passivator interaction than does phenethylammonium. By adding a small amount of CF3-PA into the precursor solution, we increase the carrier diffusion length within Pb-Sn perovskites twofold, to over 5 µm, and increase the efficiency of Pb-Sn perovskite solar cells to over 22%. We report a certified efficiency of 26.4% in all-perovskite tandem solar cells, which exceeds that of the best-performing single-junction perovskite solar cells. Encapsulated tandem devices retain more than 90% of their initial performance after 600 h of operation at the maximum power point under 1 Sun illumination in ambient conditions.

12.
ChemistryOpen ; 10(6): 639-644, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34102039

RESUMO

The electrochemical conversion of carbon dioxide (CO2 ) to carbon monoxide (CO) is a favorable approach to reduce CO2 emission while converting excess sustainable energy to important chemical feedstocks. At high current density (>100 mA cm-2 ), low energy efficiency (EE) and unaffordable cell cost limit the industrial application of conventional CO2 electrolyzers. Thus, a crucial and urgent task is to design a new type of CO2 electrolyzer that can work efficiently at high current density. Here we report a polymer-supported liquid layer (PSL) electrolyzer using polypropylene non-woven fabric as a separator between anode and cathode. Ag based cathode was fed with humid CO2 and potassium hydroxide was fed to earth-abundant NiFe-based anode. In this configuration, the PSL provided high-pH condition for the cathode reaction and reduced the cell resistance, achieving a high full cell EE over 66 % at 100 mA cm-2 .

13.
Adv Mater ; 32(27): e1907392, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32053273

RESUMO

Metal halide perovskites have recently attracted enormous attention for photovoltaic applications due to their superior optical and electrical properties. Lead (Pb) halide perovskites stand out among this material series, with a power conversion efficiency (PCE) over 25%. According to the Shockley-Queisser (SQ) limit, lead halide perovskites typically exhibit bandgaps that are not within the optimal range for single-junction solar cells. Partial or complete replacement of lead with tin (Sn) is gaining increasing research interest, due to the promise of further narrowing the bandgaps. This enables ideal solar utilization for single-junction solar cells as well as the construction of all-perovskite tandem solar cells. In addition, the usage of Sn provides a path to the fabrication of lead-free or Pb-reduced perovskite solar cells (PSCs). Recent progress in addressing the challenges of fabricating efficient Sn halide and mixed lead-tin (Pb-Sn) halide PSCs is summarized herein. Mixed Pb-Sn halide perovskites hold promise not only for higher efficiency and more stable single-junction solar cells but also for efficient all-perovskite monolithic tandem solar cells.

14.
Adv Mater ; 32(12): e1907058, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32030824

RESUMO

The development of narrow-bandgap (Eg ≈ 1.2 eV) mixed tin-lead (Sn-Pb) halide perovskites enables all-perovskite tandem solar cells. Whereas pure-lead halide perovskite solar cells (PSCs) have advanced simultaneously in efficiency and stability, achieving this crucial combination remains a challenge in Sn-Pb PSCs. Here, Sn-Pb perovskite grains are anchored with ultrathin layered perovskites to overcome the efficiency-stability tradeoff. Defect passivation is achieved both on the perovskite film surface and at grain boundaries, an approach implemented by directly introducing phenethylammonium ligands in the antisolvent. This improves device operational stability and also avoids the excess formation of layered perovskites that would otherwise hinder charge transport. Sn-Pb PSCs with fill factors of 79% and a certified power conversion efficiency (PCE) of 18.95% are reported-among the highest for Sn-Pb PSCs. Using this approach, a 200-fold enhancement in device operating lifetime is achieved relative to the nonpassivated Sn-Pb PSCs under full AM1.5G illumination, and a 200 h diurnal operating time without efficiency drop is achieved under filtered AM1.5G illumination.

16.
Nano Lett ; 18(5): 2772-2779, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29618206

RESUMO

Metal halide perovskite (MHP) nanowires such as hybrid organic-inorganic CH3NH3PbX3 (X = Cl, Br, I) have drawn significant attention as promising building blocks for high-performance solar cells, light-emitting devices, and semiconductor lasers. However, the physics of thermal transport in MHP nanowires is still elusive even though it is highly relevant to the device thermal stability and optoelectronic performance. Through combined experimental measurements and theoretical analyses, here we disclose the underlying mechanisms governing thermal transport in three different kinds of lead halide perovskite nanowires (CH3NH3PbI3, CH3NH3PbBr3 and CsPbBr3). It is shown that the thermal conductivity of CH3NH3PbBr3 nanowires is significantly suppressed as compared to that of CsPbBr3 nanowires, which is attributed to the cation dynamic disorder. Furthermore, we observed different temperature-dependent thermal conductivities of hybrid perovskites CH3NH3PbBr3 and CH3NH3PbI3, which can be attributed to accelerated cation dynamics in CH3NH3PbBr3 at low temperature and the combined effects of lower phonon group velocity and higher Umklapp scattering rate in CH3NH3PbI3 at high temperature. These data and understanding should shed light on the design of high-performance MHP based thermal and optoelectronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...