Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7518, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980409

RESUMO

Supported metal clusters comprising of well-tailored low-nuclearity heteroatoms have great potentials in catalysis owing to the maximized exposure of active sites and metal synergy. However, atomically precise design of these architectures is still challenging for the lack of practical approaches. Here, we report a defect-driven nanostructuring strategy through combining defect engineering of nitrogen-doped carbons and sequential metal depositions to prepare a series of Pt and Mo ensembles ranging from single atoms to sub-nanoclusters. When applied in continuous gas-phase decomposition of formic acid, the low-nuclearity ensembles with unique Pt3Mo1N3 configuration deliver high-purity hydrogen at full conversion with unexpected high activity of 0.62 molHCOOH molPt-1 s-1 and remarkable stability, significantly outperforming the previously reported catalysts. The remarkable performance is rationalized by a joint operando dual-beam Fourier transformed infrared spectroscopy and density functional theory modeling study, pointing to the Pt-Mo synergy in creating a new reaction path for consecutive HCOOH dissociations.

2.
Dalton Trans ; 52(33): 11571-11580, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37547989

RESUMO

Bimetallic interstitial compounds with unique geometric properties have attracted increasing attention in energy-related fields and diverse chemical transformations. Current synthesis of these compounds generally involves at least one wet-chemistry step with the use of various solvents to prepare the bimetallic precursors, and no universal protocols for different compositions are yet available. Herein, a novel synthetic strategy toward a platform of nickel-based bimetallic interstitial compounds with the formula MNi3Cx, M = Zn, In, and Ga, was developed based on a straightforward solid-state transformation, i.e., simply annealing the hydroxides of the respective metals in the presence of different carbon precursors (cyanamide, dicyandiamide, melamine, and urea) in a hydrogen stream. The key process parameters influencing the compositions of the final products are studied and the formation mechanism is discussed based on advanced characterization techniques. Powder X-ray diffraction reveals MNi3Cx as a single phase and electron microscopy shows that the MNi3Cx particles are covered with N-doped carbon shells. Extrapolation to other bimetallic interstitial compounds failed when following the above protocol, and the successful examples are linked to the formation of the corresponding bimetallic alloys in the absence of carbon precursors. When evaluated for the selective hydrogenation of dimethyl oxalate, both InNi3C0.5 and ZnNi3C0.7 show comparable high activity. While ZnNi3C0.7 delivers the highest selectivity for methyl glycolate, tunable methyl glycolate and ethylene glycol are formed on InNi3C0.5. In general, this facile solvent-free strategy affords an interesting scaffold to fabricate more advanced multi-metallic interstitial compounds with broad applications.

3.
Chempluschem ; 88(6): e202300111, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37139714

RESUMO

Metal dispersion is a key concept in heterogeneous catalysis. The conventional approaches for its estimation strongly rely on chemisorption with different probe molecules. Albeit they can generally provide an 'averaged' value in a cost-effective manner, the inhomogeneity of the metal species and the complicated metal-support interactions pose formidable challenges for the accurate determination. Full metal species quantification (FMSQ) is introduced as an advanced method to depict the whole distribution of the metal species, ranging from single atoms to clusters and nanoparticles, in a practical solid catalyst. In this approach, automated analysis of massive high-angle annular dark field scanning transmission electron microscopic images is realized through algorithms specialized in combining the electron microscopy-based atom recognition statistics and deep learning-driven nanoparticle segmentation. In this Concept article, different techniques for determining the metal dispersion are discussed with their pros and cons. FMSQ is highlighted for it can circumvent the drawbacks of conventional approaches, allowing more reliable structure-performance relationships beyond the metal size.

4.
Angew Chem Int Ed Engl ; 61(49): e202214166, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36253333

RESUMO

Identification of the roles of different active sites is vital for the rational design of catalysts. We present a cutting-edge strategy to discern the contributions of different single-atom gold species and nanoparticles in 1,3-butadiene hydrogenation, through coupling of advanced spectroscopic techniques, electron microscopy-based automated image analyses, and steady-state and kinetic studies. While all the carbon-hosted single gold atoms display negligible initial activity, the in situ-evolved gold nanoparticles are highly active. Full metal-species quantification is realized by combining electron-microscopy-based atom recognition statistics and deep-learning-driven nanoparticle segmentation algorithm, allowing the structure-activity correlations for the hybrid catalysts containing different Au architectures to be established. Surface exposure density of Au nanoparticles, as revealed by electron-microscopy-based statistics, is revealed as a new and reliable activity descriptor.

5.
Nanoscale ; 14(29): 10506-10513, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35830255

RESUMO

Tuning the coordination neighbors of the metal center is emerging as an elegant approach to manipulating the performance of supported single-atom catalysts in heterogeneous catalysis. Herein, atomically dispersed Pt species with different coordination neighbors hosted on nitrogen-doped carbon (NC) and graphitic carbon nitride (C3N4) are constructed through an impregnation-activation approach. Advanced characterization techniques including X-ray electron microscopy, X-ray absorption spectroscopy, and high angle annular dark-field scanning transmission electron microscopy reveal the different nature of active sites induced by the hosts: i.e., the Pt-Nx configuration in NC but both Pt-N and Pt-O coordinations in C3N4. H2-D2 exchange experiments and electron microscopy further evidence that Pt/NC exhibits a high propensity for H2 splitting and high thermal stability of the Pt species against agglomeration, whereas Pt/C3N4 cannot dissociate H2 and the Pt atoms easily aggregate in the reductive stream. Consequently, when applied in the selective hydrogenation of 1,3-butadiene, Pt/NC exhibits higher selectivity to butenes and excellent stability, but Pt/C3N4 behaves as a nanoparticle analogue favoring deep hydrogenation. The superior selectivity patterns of the single Pt atoms over Pt nanoparticles are rationalized by the inversed adsorption strength between the H2 and 1,3-butadiene molecules at different metal sites, which is substantiated by the kinetic studies.

6.
Adv Mater ; 31(50): e1904976, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31696984

RESUMO

Novel porous polymers can serve as self-supporting solid carriers and provide abundant coordination or charged sites for single-site metals, and thus are emerging as advanced functional materials in heterogeneous catalysis for various transformations traditionally catalyzed by homogeneous systems. A brief overview of the development of this heterogenization given, including the recent advances regarding electrovalent bonds by employing charged supports represented by porous ionic polymers (PIPs), which is exemplified herein with a novel single-site Rh1 /PIP catalyst, featuring a new active site [Rh(CO)I3 ]2- dual-ionically bound onto a quaternary phosphonium cationic framework polymer, different from the single-ionically bound [Rh(CO)2 I2 ]- in previous studies. Such a unique metal configuration of Rh1 /PIP leads to excellent performance in vapor-phase methanol carbonylation, outperforming commercial homo- and heterogeneous catalysts.

7.
Angew Chem Int Ed Engl ; 58(35): 12297-12304, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31278846

RESUMO

The potential implementation of ruthenium-based catalysts in polyvinyl chloride production via acetylene hydrochlorination is hindered by their inferior activity and stability compared to gold-based systems, despite their 4-fold lower price. Combining in-depth characterization and kinetic analysis we reveal the superior activity of ruthenium nanoparticles with an optimal size of 1.5 nm hosted on nitrogen-doped carbon (NC) and identify their deactivation modes: 1) nanoparticle redispersion into inactive single atoms and 2) coke formation at the metal sites. Tuning the density of the NC carrier enables a catalytic encapsulation of the ruthenium nanoparticles into single layer graphene shells at 1073 K that prevent the undesired metal redispersion. Finally, we show that feeding O2 during acetylene hydrochlorination limits coke formation over the nanodesigned ruthenium catalyst, while the graphene layer is preserved, resulting in a stability increase of 20 times, thus rivalling the performance of gold-based systems.

8.
Chem Sci ; 10(2): 359-369, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30746085

RESUMO

Carbon-supported gold catalysts have the potential to replace the toxic mercuric chloride-based system applied industrially for acetylene hydrochlorination, a key technology for the manufacture of polyvinyl chloride. However, the design of an optimal catalyst is essentially hindered by the difficulties in assessing the nature of the active site. Herein, we present a platform of carbon supported gold nanostructures at a fixed metal loading, ranging from single atoms of tunable oxidation state and coordination to metallic nanoparticles, by varying the structure of functionalised carbons and use of thermal activation. While on activated carbon particle aggregation occurs progressively above 473 K, on nitrogen-doped carbon gold single atoms exhibit outstanding stability up to temperatures of 1073 K and under reaction conditions. By combining steady-state experiments, density functional theory, and transient mechanistic studies, we assess the relation between the metal speciation, electronic properties, and catalytic activity. The results indicate that the activity of gold-based catalysts correlates with the population of Au(i)Cl single atoms and the reaction follows a Langmuir-Hinshelwood mechanism. Strong interaction with HCl and thermodynamically favoured acetylene activation were identified as the key features of the Au(i)Cl sites that endow their superior catalytic performance in comparison to N-stabilised Au(iii) counterparts and gold nanoparticles. Finally, we show that the carrier (activated carbon versus nitrogen-doped carbon) does not affect the catalytic response, but determines the deactivation mechanism (gold particle aggregation and pore blockage, respectively), which opens up different options for the development of stable, high-performance hydrochlorination catalysts.

9.
Angew Chem Int Ed Engl ; 58(2): 504-509, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30408311

RESUMO

Single-atom heterogeneous catalysts with well-defined architectures are promising for deriving structure-performance relationships, but the challenge lies in finely tuning the structural and electronic properties of the metal. To tackle this point, a new approach based on the surface diffusion of gold atoms on different cavities of N-doped carbon is presented. By controlling the activation temperature, the coordination neighbors (Cl, O, N) and the oxidation state of the metal can be tailored. Semi-hydrogenation of various alkynes on the single-atom gold catalysts displays substrate-dependent catalytic responses; structure insensitive for alkynols with γ-OH and unfunctionalized alkynes, and sensitive for alkynols with α-OH. Density functional theory links the sensitivity for alkynols to the strong interaction between the substrate and specific gold-cavity ensembles, mimicking a molecular recognition pattern that allows to identify the cavity site and to enhance the catalytic activity.

10.
Angew Chem Int Ed Engl ; 56(33): 9791-9795, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28569443

RESUMO

The industrialization of bromine-mediated natural gas upgrading is contingent on the ability to fully recycle hydrogen bromide (HBr), which is the end form of the halogen after the activation and coupling of the alkanes. Europium oxybromide (EuOBr) is introduced as a unique catalytic material to close the bromine loop via HBr oxidation, permitting low-temperature operation and long lifetimes with a stoichiometric feed (O2 :HBr=0.25)-conditions at which any catalyst reported to date severely deactivates because of excessive bromination. Besides, EuOBr exhibits unparalleled selectivity to methyl bromide in methane oxybromination, which is an alternative route for bromine looping. This novel active phase is finely dispersed on appropriate carriers and scaled up to technical extrudates, enhancing the utilization of the europium phase while preserving the performance. This catalytic system paves the way for sustainable valorization of stranded natural gas via bromine chemistry.

11.
Chem Rev ; 117(5): 4182-4247, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28150944

RESUMO

Halogen chemistry plays a central role in the industrial manufacture of various important chemicals, pharmaceuticals, and polymers. It involves the reaction of halogens or halides with hydrocarbons, leading to intermediate compounds which are readily converted to valuable commodities. These transformations, predominantly mediated by heterogeneous catalysts, have long been successfully applied in the production of polymers. Recent discoveries of abundant conventional and unconventional natural gas reserves have revitalized strong interest in these processes as the most cost-effective gas-to-liquid technologies. This review provides an in-depth analysis of the fundamental understanding and applied relevance of halogen chemistry in polymer industries (polyvinyl chloride, polyurethanes, and polycarbonates) and in the activation of light hydrocarbons. The reactions of particular interest include halogenation and oxyhalogenation of alkanes and alkenes, dehydrogenation of alkanes, conversion of alkyl halides, and oxidation of hydrogen halides, with emphasis on the catalyst, reactor, and process design. Perspectives on the challenges and directions for future development in this exciting field are provided.


Assuntos
Halogênios/química , Hidrocarbonetos/química , Catálise , Oxirredução , Polímeros/síntese química
12.
Materials (Basel) ; 6(1): 217-243, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809304

RESUMO

Considerable efforts have been devoted to extending the range of the elemental composition of mesoporous materials since the pioneering work of the M41S family of ordered mesoporous silica by Mobil researchers. The synthesis of transition metal-containing mesostructured materials with large surface area and high porosity has drawn great attention for its potential applications in acid and redox catalysis, photocatalysis, proton conducting devices, environmental restoration and so on. Thus, various transition metals-containing mesoporous materials, including transition metal-substituted mesoporous silicates, mesostructured transition metal oxides and transition metal phosphates (TMP), have been documented in the literature. Among these, mesostructured TMP materials are less studied, but possess some unique features, partly because of the easy and facile functionalization of PO4 and/or P-OH groups, rendering them interesting functional materials. This review first introduced the general synthesis strategies for manufacturing mesostructured TMP materials, as well as advantages and disadvantages of the respective method; then, we surveyed the ongoing developments of fabrication and application of the TMP materials in three groups on the basis of their components and application fields. Future perspectives on existing problems related to the present synthesis routes and further modifying of the functional groups for the purpose of tailoring special physical-chemical properties to meet wide application requirements were also provided in the last part.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...