Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 10(9): nwad120, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37565191

RESUMO

The successful development and application in industry of methanol-to-olefins (MTO) process brought about an innovative and efficient route for olefin production via non-petrochemical resources and also attracted attention of C1 chemistry and zeolite catalysis. Molecular sieve catalysts with diversified microenvironments embedding unique channel/cavity structure and acid properties, exhibit demonstrable features and advantages in the shape-selective catalysis of MTO. Especially, shape-selective catalysis over 8-MR and cavity-type zeolites with acidic supercage environment and narrow pore opening manifested special host-guest interaction between the zeolite catalyst and guest reactants, intermediates and products. This caused great differences in product distribution, catalyst deactivation and molecular diffusion, revealing the cavity-controlled methanol conversion over 8-MR and cavity-type zeolite catalyst. Furthermore, the dynamic and complicated cross-talk behaviors of catalyst material (coke)-reaction-diffusion over these types of zeolites determines the catalytic performance of the methanol conversion. In this review, we shed light on the cavity-controlled principle in the MTO reaction including cavity-controlled active intermediates formation, cavity-controlled reaction routes with the involvement of these intermediates in the complex reaction network, cavity-controlled catalyst deactivation and cavity-controlled diffusion. All these were exhibited by the MTO reaction performances and product selectivity over 8-MR and cavity-type zeolite catalysts. Advanced strategies inspired by the cavity-controlled principle were developed, providing great promise for the optimization and precise control of MTO process.

2.
Natl Sci Rev ; 9(9): nwac151, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36168443

RESUMO

Establishing a comprehensive understanding of the dynamical multiscale diffusion and reaction process is crucial for zeolite shape-selective catalysis and is urgently demanded in academia and industry. So far, diffusion and reaction for methanol and dimethyl ether (DME) conversions have usually been studied separately and focused on a single scale. Herein, we decipher the dynamical molecular diffusion and reaction process for methanol and DME conversions within the zeolite material evolving with time, at multiple scales, from the scale of molecules to single catalyst crystal and catalyst ensemble. Microscopic intracrystalline diffusivity is successfully decoupled from the macroscopic experiments and verified by molecular dynamics simulation. Spatiotemporal analyses of the confined carbonaceous species allow us to track the migratory reaction fronts in a single catalyst crystal and the catalyst ensemble. The constrained diffusion of DME relative to methanol alleviates the high local chemical potential of the reactant by attenuating its local enrichment, enhancing the utilization efficiency of the inner active sites of the catalyst crystal. In this context, the dynamical cross-talk behaviors of material, diffusion and reaction occurring at multiple scales is uncovered. Zeolite catalysis not only reflects the reaction characteristics of heterogeneous catalysis, but also provides enhanced, moderate or suppressed local reaction kinetics through the special catalytic micro-environment, which leads to the heterogeneity of diffusion and reaction at multiple scales, thereby realizing efficient and shape-selective catalysis.

3.
J Am Chem Soc ; 143(31): 12038-12052, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34319735

RESUMO

The industrially important methanol-to-hydrocarbons (MTH) reaction is driven and sustained by autocatalysis in a dynamic and complex manner. Hitherto, the entire molecular routes and chemical nature of the autocatalytic network have not been well understood. Herein, with a multitechnique approach and multiscale analysis, we have obtained a full theoretical picture of the domino cascade of autocatalytic reaction network taking place on HZSM-5 zeolite. The autocatalytic reaction is demonstrated to be plausibly initiated by reacting dimethyl ether (DME) with the surface methoxy species (SMS) to generate the initial olefins, as evidenced by combining the kinetic analysis, in situ DRIFT spectroscopy, 2D 13C-13C MAS NMR, electronic states, and projected density of state (PDOS) analysis. This process is operando tracked and visualized at the picosecond time scale by advanced ab initio molecular dynamics (AIMD) simulations. The initial olefins ignite autocatalysis by building the first autocatalytic cycle-olefins-based cycle-followed by the speciation of methylcyclopentenyl (MCP) and aromatic cyclic active species. In doing so, the active sites accomplish the dynamic evolution from proton acid sites to supramolecular active centers that are experimentally identified with an ever-evolving and fluid feature. The olefins-guided and cyclic-species-guided catalytic cycles are interdependently linked to forge a previously unidentified hypercycle, being composed of one "selfish" autocatalytic cycle (i.e., olefins-based cycle with lighter olefins as autocatalysts for catalyzing the formation of olefins) and three cross-catalysis cycles (with olefinic, MCP, and aromatic species as autocatalysts for catalyzing each other's formation). The unraveled dynamic autocatalytic cycles/network would facilitate the catalyst design and process control for MTH technology.

4.
ACS Cent Sci ; 7(4): 681-687, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-34056098

RESUMO

Direct observation of the activation and transformation of reactant molecules is extremely attractive but very challenging in the study of most chemical processes. Here is reported the first case of dynamic activation of C1 molecules in zeolite-catalyzed chemistry. During the methanol conversion over the HZSM-5 zeolite, a sequence of progressive activation states of dimethyl ether (DME) evoked by the special catalysis from CH3-Zeo, a hybrid supramolecular catalytic system formed by the organic methylic species growing on the inorganic silico-aluminate zeolite framework, has been directly observed by in situ ssNMR spectroscopy at programmed temperatures. Operando simulations visually display the variability of this hybrid supramolecular system of which the C-O bond property goes through a dynamic transition from covalent to ionic with the temperature increase, and thus the gradually enhanced electrophilicity of CH3 δ+ and nucleophilicity of Zeo δ- lead to the dynamic activation of DME. This dynamic transition is generally reflected in the alkyl-Zeo system with other alkoxy groups, which linked the alkoxy species and carbocations in zeolite catalysis. Consequently, this work not only sheds light on the key issue of the first carbon-carbon (C-C) bond formation in the methanol to hydrocarbons (MTH) process but also brings a new awareness on the essence of acid catalysis in zeolite mediated chemical processes.

5.
Nat Commun ; 11(1): 1079, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103001

RESUMO

Extension and clustering of polycyclic aromatic hydrocarbons (PAHs) are key mechanistic steps for coking and deactivation in catalysis reactions. However, no unambiguous mechanistic picture exists on molecule-resolved PAHs speciation and evolution, due to the immense experimental challenges in deciphering the complex PAHs structures. Herein, we report an effective strategy through integrating a high resolution MALDI FT-ICR mass spectrometry with isotope labeling technique. With this strategy, a complete route for aromatic hydrocarbon evolution is unveiled for SAPO-34-catalyzed, industrially relevant methanol-to-olefins (MTO) as a model reaction. Notable is the elucidation of an unusual, previously unrecognized mechanistic step: cage-passing growth forming cross-linked multi-core PAHs with graphene-like structure. This mechanistic concept proves general on other cage-based molecule sieves. This preliminary work would provide a versatile means to decipher the key mechanistic step of molecular mass growth for PAHs involved in catalysis and combustion chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...