Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(3): 1671-1681, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38354397

RESUMO

Nanoparticles (NPs) containing light-responsive polymers and imaging agents show great promise for controlled drug delivery. However, most light-responsive NPs rely on short-wavelength excitation, resulting in poor tissue penetration and potential cytotoxicity. Moreover, excessively sensitive NPs may prematurely release drugs during storage and circulation, diminishing their efficacy and causing off-target toxicity. Herein, we report visible-light-responsive NPs composed of an amphiphilic block copolymer containing responsive 4-acrylamide benzenesulfonyl azide (ABSA) and hydrophilic N,N'-dimethylacrylamide (DMA) units. The polymer pDMA-ABSA was loaded with the chemotherapy drug dasatinib and zinc tetraphenylporphyrin (ZnTPP). ZnTPP acted as an imaging reagent and a photosensitizer to reduce ABSA upon visible light irradiation, converting hydrophobic units to hydrophilic units and disrupting NPs to trigger drug release. These NPs enabled real-time fluorescence imaging in cells and exhibited synergistic chemophotodynamic therapy against multiple cancer cell lines. Our light-responsive NP platform holds great promise for controlled drug delivery and cancer theranostics, circumventing the limitations of traditional photosensitive nanosystems.


Assuntos
Portadores de Fármacos , Metaloporfirinas , Nanopartículas , Portadores de Fármacos/química , Azidas , Polímeros/química , Luz , Nanopartículas/química , Liberação Controlada de Fármacos
2.
Biomater Sci ; 11(18): 6149-6159, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37548310

RESUMO

Controlled drug release of nanoparticles was achieved by irreversibly disrupting polymer micelles through high-intensity focused ultrasound (HIFU) induction. An ultrasound-responsive block copolymer was synthesized, comprising an end-functional Eosin Y fluorophore, 2-tetrahydropyranyl acrylate (THPA), and acrylate mannose (MAN). The block copolymer was then self-assembled to produce micelles. The chemotherapy drug dasatinib (DAS) and the sonodynamic therapy agent methylene blue (MB) were encapsulated by the self-assembly of the block copolymer. This targeted nanoparticle enables sonodynamic therapy through high-intensity focused ultrasound while triggering nanoparticle disassembly for controlled drug release. The ultrasound-mediated, non-invasive strategy provides external spatiotemporal control for targeted tumour treatment.


Assuntos
Micelas , Neoplasias , Humanos , Sistemas de Liberação de Medicamentos , Polímeros , Ultrassonografia , Liberação Controlada de Fármacos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
3.
Polymers (Basel) ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365509

RESUMO

Bufalin (buf) has poor solubility in aqueous solution, poor tumor targeting, and many non-specific toxic and side effects. The advantages of high-molecular-weight polymer conjugates are that they can improve the water solubility of buf, prolong plasma half-life, and reduce non-specific toxicity. A novel water-soluble polymer-drug conjugate with buf and fluorescein pendants was prepared by the combination of reversible addition-fragmentation transfer (RAFT) polymerization and click chemistry. Its anticancer performance and cellular uptake behavior against liver cancer were investigated in vitro. The polymer-buf conjugates exhibit controlled release and tumor-targeting capabilities, showing promise for clinical applications.

5.
J Immunol ; 209(4): 710-722, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896338

RESUMO

Exosomes, secreted by most cells, are critical antimicrobial immune factors in animals. Recent studies of certain key regulators of vesicular transport, the Rab GTPases, have linked Rab dysfunction to regulation of innate immune signaling. However, the relationship between exosomes and Rab GTPases, resulting in antimicrobial activity in vertebrates and invertebrates during pathogenic infection, has not been addressed. In this study, SpRab11a was reported to have a protective effect on the survival rate of mud crabs Scylla paramamosain after Vibrio parahaemolyticus challenge through the stimulation of exosome secretion and modulation of anti-LPS factor (ALF) expression. Furthermore, Sp14-3-3 was confirmed to be densely packaged in exosomes after V. parahaemolyticus infection, which could recruit the MyD88 and TLR by binding the Toll/IL-1R domain to the plasma membrane, promoting the translocation of Dorsal from the cytoplasm into the nucleus, and thereby regulating ALFs expression in the hemocytes of mud crab in response to the bacterial infection. The findings therefore provide, to our knowledge, a novel mechanism that underlies the cross-talk between SpRab11a-regulated exosome formation and ALFs expression in innate immune response in invertebrates, with a crustacean species, mud crab S. paramamosain, as a model study.


Assuntos
Infecções Bacterianas , Braquiúros , Exossomos , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Artrópodes/genética , Exossomos/metabolismo , Imunidade Inata , Filogenia , Proteínas rab de Ligação ao GTP/metabolismo
6.
Biomater Sci ; 10(13): 3624-3636, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35647941

RESUMO

Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide. Gemcitabine (Gem) has been a key chemotherapy agent for pancreatic cancer treatment by suppressing cell proliferation and inducing apoptosis. However, the overexpression of inhibitors of apoptosis (IAP) family of proteins during the carcinogenesis of pancreatic cancer can develop resistance to chemotherapy treatment and result in poor efficacy. To achieve the synergistic combinations of multiple strategies for this dismal disease, we developed a robust nanomedicine system, consisting of a photodynamic therapeutic agent (chlorine e6, Ce6) and a pro-apoptotic peptide-Gem conjugate. To have spatiotemporally controlled drug release, the pro-apoptotic peptide-Gem conjugate was designed to have a vinyldithioether linker that was sensitive to reactive oxygen species (ROS). The nanomedicine was fabricated by the direct self-assembly of the pro-apoptotic peptide-Gem conjugate with Ce6. After being delivered into tumors, the nanomedicine disassembled and rapidly released Gem, Ce6, and the pro-apoptotic peptide upon light illumination (660 nm). Both in vitro and in vivo studies in pancreatic cancer models confirmed the tumor inhibition efficacy with low systemic toxicity to animals.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Nanomedicina , Neoplasias Pancreáticas/metabolismo , Peptídeos/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pancreáticas
7.
Front Mol Biosci ; 9: 871499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517857

RESUMO

Epidemics caused by coronaviruses (CoVs), namely the severe acute respiratory syndrome (SARS) (2003), Middle East respiratory syndrome (MERS) (2012), and coronavirus disease 2019 (COVID-19) (2019), have triggered a global public health emergency. Drug development against CoVs is inherently arduous. The nucleocapsid (N) protein forms an oligomer and facilitates binding with the viral RNA genome, which is critical in the life cycle of the virus. In the current study, we found a potential allosteric site (Site 1) using PARS, an online allosteric site predictor, in the CoV N-N-terminal RNA-binding domain (NTD) to modulate the N protein conformation. We identified 5-hydroxyindole as the lead via molecular docking to target Site 1. We designed and synthesized four 5-hydroxyindole derivatives, named P4-1 to P4-4, based on the pose of 5-hydroxyindole in the docking model complex. Small-angle X-ray scattering (SAXS) data indicate that two 5-hydroxyindole compounds with higher hydrophobic R-groups mediate the binding between N-NTD and N-C-terminal dimerization domain (CTD) and elicit high-order oligomerization of the whole N protein. Furthermore, the crystal structures suggested that these two compounds act on this novel cavity and create a flat surface with higher hydrophobicity, which may mediate the interaction between N-NTD and N-CTD. Taken together, we discovered an allosteric binding pocket targeting small molecules that induces abnormal aggregation of the CoV N protein. These novel concepts will facilitate protein-protein interaction (PPI)-based drug design against various CoVs.

8.
Dev Comp Immunol ; 129: 104349, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35007655

RESUMO

The function of B-cell lymphoma-2 (Bcl-2) family proteins can be divided into two categories: anti-apoptotic and pro-apoptotic. As an anti-apoptotic protein, Bcl2-associated athanogene 3 (BAG3) plays a key role in regulating apoptosis, development, cell movement, and autophagy, and mediating the adaptability of cells to stimulation. However, SpBAG3 has not been reported in mud crab (Scylla paramamosain), and the regulatory effect of SpBAG3 on apoptosis in mud crab and its function in antiviral immunity is still unknown. In this study, SpBAG3 was found, and characterized, which encoded a total of 175 amino acid (molecular mass 19.3 kDa), including a specific conserved domain of the BAG family. SpBAG3 was significantly down-regulated at 0-48 h post-infection with WSSV in vivo. The antiviral effect of SpBAG3 was investigated using RNA interference. The results indicated that SpBAG3 might be involved in assisting the replication of WSSV in the host. SpBAG3 could change the mitochondrial membrane potential (△ψm), and affect cell apoptosis through mitochondrial apoptotic pathways. Therefore, the results of this study suggested that SpBAG3 could assist WSSV infection by inhibiting the apoptosis of the hemocytes in mud crab.


Assuntos
Braquiúros/imunologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas de Artrópodes/genética , Perfilação da Expressão Gênica , Hemócitos/imunologia , Imunidade Inata/genética , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Filogenia , Vírus da Síndrome da Mancha Branca 1/fisiologia
9.
Angew Chem Int Ed Engl ; 61(18): e202114267, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35037350

RESUMO

Supramolecular interactions rely on non-covalent forces, such as hydrophobic effects, hydrogen-bonding, and electrostatic interactions, which govern many intracellular biological pathways. In cellulo supramolecular self-assembly is mainly based on host-guest interactions, changes in pH, enzymes, and polymerization-induced self-assembly to accurately induce various unnatural reactions without disturbing natural biological processes. This process can produce synthetic biocompatible macromolecules to control cell properties and regulate biological functions, such as cell proliferation and differentiation. This Minireview focuses on the latest reports in the field of in cellulo supramolecular self-assembly and anticipates future advances regarding its activation in response to internal and external stimuli, such as pH changes, reactive oxygen species, and enzymes, as well as external light illumination.


Assuntos
Substâncias Macromoleculares , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Polimerização , Eletricidade Estática
10.
Chemistry ; 27(44): 11268-11272, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34114272

RESUMO

Photocages for protection and the controlled release of bioactive compounds have been widely investigated. However, the vast majority of these photocages employ the cleavage of single bonds and high-energy ultraviolet light. The construction of a photoactivation system that uses visible light to cleave unsaturated bonds still remains a challenge. Herein, we report a regioselective oxidative cleavage of C=C bonds from a boron-dipyrrolemethene (BODIPY)-based photocage by illumination at 630 nm, resulting in a free aldehyde and a thiol fluorescent probe. This strategy was demonstrated in live HeLa cells, and the generated α-formyl-BODIPY allowed real-time monitoring of aldehyde release in the cells. In particular, it is shown that a mannose-functionalized photocage can target HepG2 cells.


Assuntos
Compostos de Boro , Boro , Células HeLa , Humanos , Luz , Estresse Oxidativo
11.
Comput Struct Biotechnol J ; 19: 2246-2255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936565

RESUMO

To date, the COVID-19 pandemic has claimed over 1 million human lives, infected another 50 million individuals and wreaked havoc on the global economy. The crisis has spurred the ongoing development of drugs targeting its etiological agent, the SARS-CoV-2. Targeting relevant protein-protein interaction interfaces (PPIIs) is a viable paradigm for the design of antiviral drugs and enriches the targetable chemical space by providing alternative targets for drug discovery. In this review, we will provide a comprehensive overview of the theory, methods and applications of PPII-targeted drug development towards COVID-19 based on recent literature. We will also highlight novel developments, such as the successful use of non-native protein-protein interactions as targets for antiviral drug screening. We hope that this review may serve as an entry point for those interested in applying PPIIs towards COVID-19 drug discovery and speed up drug development against the pandemic.

12.
Mar Biotechnol (NY) ; 22(5): 661-672, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32914203

RESUMO

Mud crab Scylla paramamosain (S. paramamosain) is an economically important marine crab species around the world. White spot syndrome virus (WSSV) and Aeromonas hydrophila (AH) are pathogens during mud crab mariculture. It has been reported that gut microbiota possessed a great impact on the host development, nutrition, immunity, and disease resistance. However, little information was known about the impacts of WSSV or AH infection on the structure, composition, and function of the gut microbiotain of mud crabs. In this study, the gut microbiota of mud crabs infected with A. hydrophila and WSSV were characterized. The results showed that the composition and bacteria correlation of the gut microbiota were significantly decreased. During A. hydrophila infection, the pathogens played a major regulatory role in host. While in the mud crabs infected with WSSV, many beneficial strains had a great impact on the host expect for the pathogens. Therefore, our study revealed the effect of pathogens infection on gut microbiota of mud crabs and clarified the difference between viral infection and bacterial infection.


Assuntos
Braquiúros/microbiologia , Infecções por Vírus de DNA/veterinária , Microbioma Gastrointestinal , Infecções por Bactérias Gram-Negativas/veterinária , Aeromonas hydrophila/fisiologia , Animais , Braquiúros/virologia , Vírus da Síndrome da Mancha Branca 1/fisiologia
13.
Dev Comp Immunol ; 113: 103799, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32738334

RESUMO

White spot syndrome virus (WSSV) is a severe pathogen of mud crab Scylla paramamosain (S. paramamosain). Hemolymph, containing three types of hemocytes, is the key immunoregulatory tool of mud crab in response to pathogens. Herein, the metabonomics and transcriptomics analysis of hemocytes were adopted to investigate the immune response of S. paramamosain challenged to WSSV. We established the metabolic and transcriptional profiles of mud crab hemocytes with different treatments, including the control group (WT), WSSV early infected group (WSSV-6 h) and WSSV later infected group (WSSV-72 h). The results showed that 68 metabolites were dysregulated both in WSSV-infected mud crab of early stage and later stage, while 4452 genes were up-regulated and 9746 genes were down-regulated in WSSV-6 h, and 2016 genes were up-regulated and 6229 genes were down-regulated compared in WSSV-72 h. We found that several pathways were dysregulated at both metabolic and transcriptional levels, including ABC transporters, purine metabolism, taurine and hypotaurine metabolism in the WSSV early infected group, cysteine metabolism, methionine metabolism and biosynthesis of unsaturated fatty acids in the WSSV later infected group. In this context, through the integration of metabolomics and transcriptomics, our study provided a more comprehensive understanding of the biological process in mud crab against viral invasion.


Assuntos
Braquiúros/metabolismo , Infecções por Vírus de DNA/imunologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Braquiúros/imunologia , Progressão da Doença , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata , Metabolismo dos Lipídeos , Metaboloma , Purinas/metabolismo , Taurina/metabolismo
14.
Virulence ; 11(1): 849-862, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32597292

RESUMO

Programmed cell death 6 (PDCD6) is a well-known apoptosis regulator that is involved in the immunity of mammals. However, the effects of miRNA-mediated regulation of PDCD6 expression on apoptosis and virus infection in organisms, especially in marine invertebrates, have not been extensively explored. In this study, PDCD6 of mud crab (Scylla paramamosain) (Sp-PDCD6) was characterized. The results showed that Sp-PDCD6 contains five EF-hands domains and could suppress virus infection via apoptosis promotion. It also presented that Sp-PDCD6 was directly targeted by miR-9875 in vitro and in vivo, miR-9875 served as a positive regulator during the virus invasion. The findings indicated that the miR-9875-PDCD6 pathway possessed fundamental effects on the immune response to virus infection in mud crab. Therefore, our research provided a novel insight into the roles of both miR-9875 and PDCD6 in the regulation of apoptosis and virus defense in mud crab.


Assuntos
Proteínas de Artrópodes/imunologia , Braquiúros/imunologia , Braquiúros/virologia , Imunidade Inata , MicroRNAs/imunologia , Viroses/veterinária , Animais , Proteínas de Artrópodes/genética , Braquiúros/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética , Filogenia , Viroses/genética , Viroses/imunologia
15.
PLoS Pathog ; 16(5): e1008366, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32433716

RESUMO

MicroRNAs are regulatory molecules that can be packaged into exosomes to modulate cellular response of recipients. While the role of exosomes during viral infection is beginning to be appreciated, the involvement of exosomal miRNAs in immunoregulation in invertebrates has not been addressed. Here, we observed that exosomes released from WSSV-injected mud crabs could suppress viral replication by inducing apoptosis of hemocytes. Besides, miR-137 and miR-7847 were found to be less packaged in mud crab exosomes during viral infection, with both miR-137 and miR-7847 shown to negatively regulate apoptosis by targeting the apoptosis-inducing factor (AIF). Our data also revealed that AIF translocated to the nucleus to induce DNA fragmentation, and could competitively bind to HSP70 to disintegrate the HSP70-Bax (Bcl-2-associated X protein) complex, thereby activating the mitochondria apoptosis pathway by freeing Bax. The present finding therefore provides a novel mechanism that underlies the crosstalk between exosomal miRNAs and apoptosis pathway in innate immune response in invertebrates.


Assuntos
Apoptose/genética , Braquiúros/genética , Exossomos/genética , Animais , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Braquiúros/metabolismo , Braquiúros/virologia , Decápodes/genética , Decápodes/metabolismo , Decápodes/virologia , Exossomos/metabolismo , Hemócitos/imunologia , Hemócitos/metabolismo , Imunidade Inata , Infecções , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias , Replicação Viral/genética , Vírus da Síndrome da Mancha Branca 1/metabolismo , Vírus da Síndrome da Mancha Branca 1/patogenicidade
16.
Fish Shellfish Immunol ; 103: 430-437, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32473364

RESUMO

Vibrio parahaemolyticus (V. parahaemolyticus) is a common pathogen for marine crustacean, which causes severe illnesses in aquatic animals. Therefore, it is meaningful to explore the mechanism during V. parahaemolyticus infection. In this study, to investigate the immune responses of mud crab Scylla paramamosain (S. paramamosain) to V. parahaemolyticus, we established the metabolic and transcriptional profiles of mud crab hemocytes challenged with V. parahaemolyticus. The results indicated that V. parahaemolyticus infection could induce a series of metabolism alterations at both metabolome and transcriptome levels, including biosynthesis of amino acids and Aminoacyl-tRNA, Purine and pyrimidine metabolism, TCA cycle and glutamine metabolism. In this context, through the integration of metabolomics and transcriptomics, our study provided a more comprehensive understanding of the biological process in mud crab against pathogen infection.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Metaboloma/imunologia , Transcriptoma/imunologia , Vibrio parahaemolyticus/fisiologia , Animais , Redes e Vias Metabólicas/imunologia
17.
Fish Shellfish Immunol ; 100: 427-435, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32147373

RESUMO

microRNAs (miRNAs) are known to regulate various immune functions by silencing the target genes in both vertebrates and invertebrates. However, in mud crab Scylla paramamosain, the role of miRNAs during the response to virus invasion remains unclear. To investigate the roles of miRNAs in S. paramamosain during virus infection, the mud crab was challenged with white spot syndrome virus (WSSV) and then subjected to the transcriptional analysis at different conditions. The results of high-throughput sequencing revealed that 940,379 and 1,306,023 high-quality mappable reads were detected in the hemocyte of normal and WSSV-infected mud crabs, respectively. Besides, the total number of 261 unique miRNAs were identified. Among them, 131 miRNAs were specifically expressed in the hemocytes of normal mud crabs, 46 miRNAs were specifically transcribed in those of WSSV-infected individuals, the other 84 miRNAs were expressed in both normal and WSSV-infected individuals. Furthermore, a number of 152 (89 down-regulated and 63 up-regulated) miRNAs were found to be differentially expressed in the WSSV-infected hemocytes, normalized to the controls. The identified miRNAs were subjected to GO analysis and target gene prediction and the results suggested that the differentially regulated miRNAs were mainly correlated with the changes of the immune responses of the hemocytes, including phagocytosis, melanism, and apoptosis as well. Taken together, the results demonstrated that the expressed miRNAs during the virus infection were mainly involved in the regulation of immunological pathways in mud crabs. Our findings not only enrich the understanding of the functions of miRNAs in the innate immune system but also provide some novel potential targets for the prevention of WSSV infection in crustaceans.


Assuntos
Braquiúros/genética , Braquiúros/virologia , Infecções por Vírus de DNA/veterinária , MicroRNAs/genética , Animais , Braquiúros/imunologia , Biologia Computacional , Infecções por Vírus de DNA/imunologia , Perfilação da Expressão Gênica , Hemócitos/imunologia , Hemócitos/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade Inata/genética , Fagocitose , Vírus da Síndrome da Mancha Branca 1
18.
J Med Chem ; 63(6): 3131-3141, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32105468

RESUMO

Structure-based stabilization of protein-protein interactions (PPIs) is a promising strategy for drug discovery. However, this approach has mainly focused on the stabilization of native PPIs, and non-native PPIs have received little consideration. Here, we identified a non-native interaction interface on the three-dimensional dimeric structure of the N-terminal domain of the MERS-CoV nucleocapsid protein (MERS-CoV N-NTD). The interface formed a conserved hydrophobic cavity suitable for targeted drug screening. By considering the hydrophobic complementarity during the virtual screening step, we identified 5-benzyloxygramine as a new N protein PPI orthosteric stabilizer that exhibits both antiviral and N-NTD protein-stabilizing activities. X-ray crystallography and small-angle X-ray scattering showed that 5-benzyloxygramine stabilizes the N-NTD dimers through simultaneous hydrophobic interactions with both partners, resulting in abnormal N protein oligomerization that was further confirmed in the cell. This unique approach based on the identification and stabilization of non-native PPIs of N protein could be applied toward drug discovery against CoV diseases.


Assuntos
Alcaloides/farmacologia , Antivirais/farmacologia , Indóis/farmacologia , Proteínas do Nucleocapsídeo/metabolismo , Multimerização Proteica/efeitos dos fármacos , Alcaloides/química , Alcaloides/metabolismo , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/metabolismo , Chlorocebus aethiops , Proteínas do Nucleocapsídeo de Coronavírus , Cristalografia por Raios X , Desenho de Fármacos , Interações Hidrofóbicas e Hidrofílicas , Indóis/química , Indóis/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proteínas do Nucleocapsídeo/química , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência , Células Vero
19.
Dev Comp Immunol ; 106: 103603, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31899307

RESUMO

B-cell lymphoma 2 (Bcl-2) related ovarian killer (BOK) is a member of the Bcl-2 family, which has a similar function to BAX and BAK in the process of apoptosis. However, how BOK activates the intrinsic (mitochondrial) apoptotic pathway remains poorly understood in invertebrates. In this study, SpBOK identified in mud crab is an important effector responsible for the anti-WSSV (White Spot Syndrome Virus) infection by activating the apoptotic pathway. The SpBOK gene encoded a 282 amino acid peptides (molecular mass of 29 kD), which contained four distinct Bcl-2 family homology (BH) domains. SpBOK was widely expressed in all tested tissues and up-regulated after WSSV infection in vivo. The role of SpBOK on the anti-WSSV response in mud crab was investigated by using the RNAi approach in vivo. SpBOK exerted a regulatory role in changing the mitochondrial membrane potential (⊿ψm) and activating the caspase signaling and thus induced apoptosis. Moreover, the results showed that WSSV replication in mud crab could be effectively inhibited by SpBOK. Therefore, the results of this study demonstrated that SpBOK can inhibit WSSV infection by regulating the intrinsic apoptosis pathway in mud crab.


Assuntos
Proteínas de Artrópodes/genética , Braquiúros/fisiologia , Infecções por Vírus de DNA/imunologia , Hemócitos/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Apoptose , Proteínas de Artrópodes/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata , Potencial da Membrana Mitocondrial , Filogenia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Regulação para Cima , Replicação Viral
20.
Dev Comp Immunol ; 105: 103580, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901557

RESUMO

In mammals, casitas B-lineage lymphoma (CBL) family proteins, a RING-type E3 ubiquitin ligase, are involved in many signal transduction pathways. However, the functions of CBL in invertebrates are not well elucidated. In this study, Sp-CBL containing CBL-N, CBL-2, CBL-3 and RING domains was identified in mud crab Scylla paramamosain. Sp-CBL was widely expressed in all tissues tested and found to be significantly up-regulated in the hemocytes of mud crab challenged by white spot syndrome virus (WSSV). The RNA interference of Sp-CBL increased the copy number of WSSV and declined the apoptosis rate of hemocytes. In addition, Sp-CBL could affect the activities of caspase 3 and the mitochondrial membrane potential. Taken together, the results of this study revealed that Sp-CBL could restrict WSSV proliferation through enhancing the apoptosis of the hemocytes, which would provide a novel insight into the anti-viral response in the innate immunity system of mud crab.


Assuntos
Proteínas de Artrópodes/metabolismo , Braquiúros/metabolismo , Infecções por Vírus de DNA/metabolismo , Hemócitos/imunologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Apoptose , Proteínas de Artrópodes/genética , Caspase 3/metabolismo , Clonagem Molecular , Infecções por Vírus de DNA/genética , Infecções por Vírus de DNA/imunologia , Imunidade Inata , Potencial da Membrana Mitocondrial , Especificidade de Órgãos , Proteínas Proto-Oncogênicas c-cbl/genética , RNA Interferente Pequeno/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...