Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Nano ; 18(16): 10850-10862, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591990

RESUMO

Lithium lanthanum titanate (LLTO) perovskite is one of the most promising electrolytes for all-solid-state batteries, but its performance is limited by the presence of grain boundaries (GBs). The fraction of GBs can be significantly reduced by the preparation of coarse-grained LLTO ceramics. In this work, we describe an alternative approach to the fabrication of ceramics with large LLTO grains based on self-seeded grain growth. In compositions with the starting stoichiometry for the Li0.20La0.60TiO3 phase and with a high excess addition of Li (Li:La:Ti = 11:15:25), microstructure development starts with the formation of the layered RP-type Li2La2Ti3O10 phase. Grains with many RP-type defects initially develop into large platelets with thicknesses of up to 10 µm and lengths over 100 µm. Microstructure development continues with the crystallization of LLTO perovskite, epitaxially on the platelets and as smaller grains with thinner in-grain RP-lamellae. Theoretical calculations confirmed that the formation of RP-type sequences is energetically favored and precedes the formation of the LLTO perovskite phase. At around 1250 °C, the RP-type sequences become thermally unstable and gradually recrystallize to LLTO via the ionic exchange between the Li-rich RP-layers and the neighboring Ti and La layers as shown by quantitative HAADF-STEM. At higher sintering temperatures, LLTO grains become free of RP-type defects and the small grains recrystallize onto the large platelike seed grains via Ostwald ripening. The final microstructure is coarse-grained LLTO with total ionic conductivity in the range of 1 × 10-4 S/cm.

2.
ACS Appl Mater Interfaces ; 15(3): 4101-4112, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36647588

RESUMO

All-solid-state lithium batteries are promising candidates for next-generation energy storage systems. Their performance critically depends on the capacity and cycling stability of the cathodic layer. Cells with a garnet Li7La3Zr2O12 (LLZO) electrolyte can show high areal storage capacity. However, they commonly suffer from performance degradation during cycling. For fully inorganic cells based on LiCoO2 (LCO) as cathode active material and LLZO, the electrochemically induced interface amorphization has been identified as an origin of the performance degradation. This study shows that the amorphized interface can be recrystallized by thermal recovery (annealing) with nearly full restoration of the cell performance. The structural and chemical changes at the LCO/LLZO heterointerface associated with degradation and recovery were analyzed in detail and justified by thermodynamic modeling. Based on this comprehensive understanding, this work demonstrates a facile way to recover more than 80% of the initial storage capacity through a thermal recovery (annealing) step. The thermal recovery can be potentially used for cost-efficient recycling of ceramic all-solid-state batteries.

3.
Sci Rep ; 12(1): 21352, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494566

RESUMO

Ultraviolet C (UVC) radiation has been considered a possible option to alleviate the seriousness of black spots on bananas during preservation which help increase economic efficiency. In this study, using 275 nm UVC light-emitting diodes (LEDs), a preliminary cavity with dimensions of 30 × 30 × 30 cm was designed and fabricated to aid in reducing black spots on bananas with the aim of application in the factory conveyor belts. The UVC irradiance distribution was thoroughly monitored for many sections at different box heights in both simulation and measurement, with a dominant range of 6-9 W/m2 in the middle. Afterward, trials were conducted in vitro and in vivo at different selected UVC doses. The results in vitro revealed that a dose of over 0.36 kJ/m2 has an excellent effect on inhibiting the colonial germination of fungal Colletotrichum musae, a common species of fungi causing black spot disease on bananas. In vivo conditions, with a short exposure time of around 5 s, the black spots on UVC-irradiated banana peel significantly reduced with minimal sensory damage compared to a control banana via observation after seven days from treatment. Finally, the optimal UVC dose is proposed from 0.030 to 0.045 kJ/m2 for the one-time treatment when considering the upper surface of the banana. With flexibility advantage and short exposure time, the fabricated cavity (box) promises to bring a lot of application potential to aid banana preservation in factories and households.


Assuntos
Musa , Raios Ultravioleta
4.
Sci Rep ; 12(1): 12433, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859113

RESUMO

In this study, we proposed and demonstrated a circuit design for solving problems related to blue light leakage (e.g., eye damage) when phosphor-converted white light-emitting diodes (pcW-LEDs) overheat. This circuit only needs a positive thermal coefficient thermistor, resistor, and diodes in series and parallel; thus, it can easily be integrated into components. Simulations and corresponding experimental results show that this method can accurately suppress the overheating component's injection current and allow for LEDs to work normally after returning to the operating temperature. It thus allows the user's eyes to be actively protected, e.g., to avoid exposure to the bluish light when overheating occurs. In addition, the quenching of luminous flux is a signal to remind the user to replace the LED. The proposed method is low-cost, effective, simple, and useful for increasing the quality of LED lighting and biological safety.

5.
Sci Rep ; 12(1): 6444, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440679

RESUMO

In this paper, we propose and demonstrate to use of a single reflector with 68 segments to project vehicle low beam and high beam with the use of a GaN-based mini-LED matrix, which is a 5 × 6 LED die array. The design of the reflector is based on light field technology in considering etendue from the light source across the segments. The group of the segments with smaller etendue from the LED dies in the bottom 2 rows are used to project low beams. When the other LED dies are turned on, the reflector will project light upward and form the high beam. The selection of the turn-on LED dies in the mini-LED matrix can adjust the width of the illumination pattern so that an adaptive low/high beam can be performed. Besides, to extend the functionality of the headlamp module, we propose to dispense IR phosphor on LED dies in the high-beam zone of the GaN-based mini-LED matrix. Thus the vehicle can emit IR high beam, which can be imaged through a camera and can be incorporated with machine vision for an autonomous vehicle without using a complicated adaptive headlight to avoid glare. The proposed multi-function in spatial and spectral domains will be helpful to various applications with use of a mini-LED matrix.

6.
ACS Appl Mater Interfaces ; 14(9): 11288-11299, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35226453

RESUMO

The garnet-type Li7La3Zr2O12 (LLZO) ceramic solid electrolyte combines high Li-ion conductivity at room temperature with high chemical stability. Several all-solid-state Li batteries featuring the LLZO electrolyte and the LiCoO2 (LCO) or LiCoO2-LLZO composite cathode were demonstrated. However, all batteries exhibit rapid capacity fading during cycling, which is often attributed to the formation of cracks due to volume expansion and the contraction of LCO. Excluding the possibility of mechanical failure due to crack formation between the LiCoO2/LLZO interface, a detailed investigation of the LiCoO2/LLZO interface before and after cycling clearly demonstrated cation diffusion between LiCoO2 and the LLZO. This electrochemically driven cation diffusion during cycling causes the formation of an amorphous secondary phase interlayer with high impedance, leading to the observed capacity fading. Furthermore, thermodynamic analysis using density functional theory confirms the possibility of low- or non-conducting secondary phases forming during cycling and offers an additional explanation for the observed capacity fading. Understanding the presented degradation paves the way to increase the cycling stability of garnet-based all-solid-state Li batteries.

7.
Materials (Basel) ; 14(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34640181

RESUMO

Low-temperature co-fired ceramics (LTCCs) have been attracting attention due to rapid advances in wireless telecommunications. Low-dielectric-constant (Dk) and low-dissipation-factor (Df) LTCCs enable a low propagation delay and high signal quality. However, the wide ranges of glass, ceramic filler compositions, and processing features in fabricating LTCC make property modulating difficult via experimental trial-and-error approaches. In this study, we explored Dk and Df values of LTCCs using a machine learning method with a Gaussian kernel ridge regression model. A principal component analysis and k-means methods were initially performed to visually analyze data clustering and to reduce the dimension complexity. Model assessments, by using a five-fold cross-validation, residual analysis, and randomized test, suggest that the proposed Dk and Df models had some predictive ability, that the model selection was appropriate, and that the fittings were not just numerical due to a rather small data set. A cross-plot analysis and property contour plot were performed for the purpose of exploring potential LTCCs for real applications with Dk and Df values less than 10 and 2 × 10-3, respectively, at an operating frequency of 1 GHz. The proposed machine learning models can potentially be utilized to accelerate the design of technology-related LTCC systems.

8.
Opt Express ; 29(12): 18865-18875, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34154133

RESUMO

This paper proposed an effective multi-objective design procedure, called light field management, for a single multi-segment reflector that can simultaneously project low beams and high beams for bicycle and e-bike applications. Furthermore, two different regulations can be met, including the K-mark and the ECE Class B regulations. Through light field management, the etendue and flux density of each segment can be effectively managed, so that the design successfully meets the multiple regulations. In the experimental verification, two mockup samples including a plastic reflector with aluminum coating and an aluminum reflector were fabricated to verify the validity of the design. The experiment showed that the contrast across the cutoff line reached 100 and above, where the brightest point for low beams reached 200 lux and the whole pattern reached 250 lux. The supreme behavior of the head lamp shows that the proposed design procedure is valuable and helpful to an optical designer.

9.
ChemSusChem ; 13(16): 3944, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32720759

RESUMO

Invited for this month's cover are the groups of Shih-kang Lin at the National Cheng Kung University and Takeshi Abe at Kyoto University. The image shows how interfacial chemistry design can play a role in unlocking higher-energy-density and fast-charging Li4 Ti5 O12 -based lithium-ion batteries for electric vehicle applications. The Full Paper itself is available at 10.1002/cssc.202001086.

10.
ChemSusChem ; 13(16): 4041-4050, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32666624

RESUMO

Charge-transfer kinetics between electrodes and electrolytes critically determines the performance of lithium-ion batteries (LIBs). Lithium titanate defect spinel (Li4 Ti5 O12 , LTO) is a safe and durable anode material, but its relatively low energy density limits the range of applications. Utilizing the low potential region of LTO is a straightforward strategy for increasing energy density. However, the electrochemical characteristics of LTO at low potentials and the properties of the solid-electrolyte interphase (SEI) on LTO are not well understood. Here, we investigate the charge-transfer kinetics of the SEI formed between model LTO thin-film electrodes and organic electrolytes with distinct solvation ability using AC impedance spectroscopy whereas their stability was assessed by cyclic voltammetry of ferrocene. With the SEI film on LTO, the Li+ desolvation was rate-determining step but with larger activation energies, which showed a strong dependence on the solvation ability of electrolyte. The activation energies of desolvation for the fluoroethylene carbonate+dimethyl carbonate- and ethylene carbonate+diethyl carbonate-based systems increased from 35 and 55 to 44 and 67 kJ mol-1 , respectively, and that for the propylene carbonate-based system did not noticeably change at around 67 kJ mol-1 . In addition, the SEI passivation of LTO was much slower than that of graphite, and the rate also strongly depended on the solvation ability of the electrolyte. Understanding the surface properties of LTO at low potentials opens the door for high-energy-density LTO-based LIBs.

11.
Phys Chem Chem Phys ; 21(37): 20757-20763, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31513189

RESUMO

Lithium titanate (Li4Ti5O12, LTO) has already occupied its niche as an anode material for high-power and long-lifespan lithium batteries, but some novel directions for basic and applied research are still open. One of the most promising approaches in improving its properties, e.g., electronic conductivity and rate capability, is based on controllable defect engineering. The "defects" may be intentionally introduced into LTO via doping, surface modifications, and the synergy between them. However, the defects, which have significant effects to the electrical and electrochemical properties, are usually extremely dilute. Reliable material characterizations are essential and challenging, but the instrumental tools for revealing dilute defects are still insufficient. Herein, detailed analyses on the surface or subsurface defects of carbon-coated LTO were performed using various material characterization methods. Raman spectroscopy has been identified as a unique tool for the probing of structural defects.

12.
Sci Rep ; 9(1): 7950, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138857

RESUMO

The transformation of pyrite into pyrrhotite above 500 °C was observed in the Chelungpu fault zone, which formed as a result of the 1999 Chi-Chi earthquake in Taiwan. Similarly, pyrite transformation to pyrrhotite at approximately 640 °C was observed during the Tohoku earthquake in Japan. In this study, we investigated the high-temperature phase-transition of iron sulfide minerals (greigite) under anaerobic conditions. We simulated mineral phase transformations during fault movement with the aim of determining the temperature of fault slip. The techniques used in this study included thermogravimetry and differential thermal analysis (TG/DTA) and in situ X-ray diffraction (XRD). We found diversification between 520 °C and 630 °C in the TG/DTA curves that signifies the transformation of pyrite into pyrrhotite. Furthermore, the in situ XRD results confirmed the sequence in which greigite underwent phase transitions to gradually transform into pyrite and pyrrhotite at approximately 320 °C. Greigite completely changed into pyrite and pyrrhotite at 450 °C. Finally, pyrite was completely transformed into pyrrhotite at 580 °C. Our results reveal the temperature and sequence in which the phase transitions of greigite occur, and indicate that this may be used to constrain the temperature of fault-slip. This conclusion is supported by field observations made following the Tohoku and Chi-Chi earthquakes.

13.
Materials (Basel) ; 12(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791585

RESUMO

Low-temperature lead (Pb)-free solders are demanding in the electronic packaging industry, because it would open the door for various economic choices of polymeric materials as substrates and also revives the lower cost processes. Here, we proposed a tin⁻bismuth⁻indium⁻gallium (Sn-52.5Bi-2.68In-1Ga, SBIG (in wt.%)) quaternary low-temperature solder, designed based on systematic CALPHAD (CALculation of PHAse Diagram)-type thermodynamic calculations and corresponding key experiments. The solidification behavior of SBIG was carefully elaborated based on the computations using the lever rule and the Scheil model, and the experiments in terms of thermal analyses and microstructures of sample produced with step-quenching and various cooling rates. The mechanical properties of as-cast and 80 °C-annealed SBIG as well as their microstructures and fracture surfaces were evaluated in the tensile tests. The proposed SBIG solder is with a low liquidus temperature of 141.9 °C and is typically composed of the primary (Sn) phase, the (Sn) + (Bi) eutectic structure and a small amount of (Ga) phase. Air cooling has been identified as a satisfactory cooling rate, which would not lead to the formation of the brittle BiIn intermetallic compound. The as-cast SBIG solder exhibited high yield strength (YS) of 43.7 MPa, high ultimate tensile strength (UTS) of 53.3 MPa and an extremely large elongation of 97.3% as comparing to the conventional eutectic Sn-58Bi solder (YS: 43.1 MPa, UTS: 49.5 MPa, and elongation: 37.5%). However, the proposed SBIG solder does not possess qualified thermal stability, that significant degradation in both strength and elongation were observed after being subjected to extensive thermal ageing at 80 °C for 504 h.

14.
Sci Rep ; 7(1): 3082, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28596543

RESUMO

The electromigration (EM) effect involves atomic diffusion of metals under current stressing. Recent theories of EM are based on the unbalanced electrostatic and electron-wind forces exerted on metal ions. However, none of these models have coupled the EM effect and lattice stability. Here, we performed in situ current-stressing experiments for pure Cu strips using synchrotron X-ray diffractometry and scanning electron microscopy and ab initio calculations based on density functional theory. An intrinsic and non-uniform lattice expansion - larger at the cathode and smaller at the anode, is identified induced by the flow of electrons. If this electron flow-induced strain is small, it causes an elastic deformation; while if it is larger than the yield point, diffusion as local stress relaxation will cause the formation of hillocks and voids as well as EM-induced failure. The fundamental driving force for the electromigration effect is elucidated and validated with experiments.

15.
Sci Rep ; 6: 34769, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703220

RESUMO

Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag "nano-volcanic eruption" mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

16.
Sci Rep ; 4: 6038, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25123103

RESUMO

Edge-decorated graphene nanoribbons are investigated with the density functional theory; they reveal three stable geometric structures. The first type is a tubular structure formed by the covalent bonds of decorating boron or nitrogen atoms. The second one consists of curved nanoribbons created by the dipole-dipole interactions between two edges when decorated with Be, Mg, or Al atoms. The final structure is a flat nanoribbon produced due to the repulsive force between two edges; most decorated structures belong to this type. Various decorating atoms, different curvature angles, and the zigzag edge structure are reflected in the electronic properties, magnetic properties, and bonding configurations. Most of the resulting structures are conductors with relatively high free carrier densities, whereas a few are semiconductors due to the zigzag-edge-induced anti-ferromagnetism.

17.
Sci Rep ; 4: 4557, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24690992

RESUMO

Au-Ge alloys are promising materials for high-power and high-frequency packaging, and Ni is frequently used as diffusion barriers. This study investigates interfacial reactions in Au-12Ge/Ni joints at 300 °C and 400 °C. For the reactions at 300 °C, typical interfacial morphology was observed and the diffusion path was (Au) + (Ge)/NiGe/Ni5Ge3/Ni. However, an interesting phenomenon--the formation of (Au,Ni,Ge)/NiGe alternating layers - was observed for the reactions at 400 °C. The diffusion path across the interface was liquid/(Au,Ni,Ge)/NiGe/· · ·/(Au,Ni,Ge)/NiGe/Ni2Ge/Ni. The periodic thermodynamic instability at the NiGe/Ni2Ge interface caused the subsequent nucleation of new (Au,Ni,Ge)/NiGe pairs. The thermodynamic foundation and mechanism of formation of the alternating layers are elaborated in this paper.

18.
Sci Rep ; 3: 2731, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24060995

RESUMO

Soldering is an ancient process, having been developed 5000 years ago. It remains a crucial process with many modern applications. In electronic devices, electric currents pass through solder joints. A new physical phenomenon--the supersaturation of solders under high electric currents--has recently been observed. It involves (1) un-expected supersaturation of the solder matrix phase, and (2) the formation of unusual "ring-shaped" grains. However, the origin of these phenomena is not yet understood. Here we provide a plausible explanation of these phenomena based on the changes in the phase stability of Pb-Sn solders. Ab initio-aided CALPHAD modeling is utilized to translate the electric current-induced effect into the excess Gibbs free energies of the phases. Hence, the phase equilibrium can be shifted by current stressing. The Pb-Sn phase diagrams with and without current stressing clearly demonstrate the change in the phase stabilities of Pb-Sn solders under current stressing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...