Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 351: 119823, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109822

RESUMO

Soil microorganisms are the drivers of soil organic carbon (SOC) mineralization, and the activities of these microorganisms are considered to play a key role in SOC dynamics. However, studies of the relationship between soil microbial carbon metabolism and SOC stocks are rare, especially in different physical fractions (e.g., particulate organic carbon (POC) fraction and mineral-associated organic carbon (MAOC) fraction). In this study, we investigated the changing patterns of SOC stocks, POC stocks, MAOC stocks and microbial carbon metabolism (e.g., microbial growth, carbon use efficiency and biomass turnover time) at 0-20 cm along an elevational gradient in a subtropical mountain forest ecosystem. Our results showed that SOC and POC stocks increased but MAOC stocks remained stable along the elevational gradient. Soil microbial growth increased while microbial turnover time decreased with elevation. Using structural equation modeling, we found that heightened microbial growth is associated with elevated POC stocks. Moreover, MAOC stocks positively correlate with microbial growth but show negative associations with both POC stocks and soil pH. Overall, the increase in SOC stocks along the elevational gradient is primarily driven by changes in POC stocks rather than MAOC stocks. These findings underscore the importance of considering diverse soil carbon fractions and microbial activities in predicting SOC responses to elevation, offering insights into potential climate change feedbacks.


Assuntos
Ecossistema , Solo , Solo/química , Carbono , Florestas , Biomassa , Minerais
2.
Ecol Evol ; 13(10): e10594, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37818244

RESUMO

Understanding the elevational patterns of soil microbial diversity is crucial for microbial biogeography, yet the elevational patterns of diversity across different climatic zones, trophic levels, and taxonomic levels remain unclear. In this study, we investigated the elevational patterns of species richness, species evenness and the relationship between species richness and evenness (RRE) in the forest soil bacterial and fungal communities and individual phyla across three climatic zones (tropical, subtropical, and cold temperate). Our results revealed that soil bacterial richness (alpha diversity) decreased with elevation, while fungal richness exhibited a hump-shaped pattern in the tropical and cold-temperate forests. Elevational patterns of evenness in bacterial and fungal communities showed the hump-shaped pattern across climatic zones, except for bacterial evenness in the tropical forest. Both bacterial and fungal richness and evenness were positively correlated in the subtropical and cold-temperate forests, while negatively correlated for bacteria in the tropical forest. The richness and evenness of soil microorganisms across different regions were controlled by climatic and edaphic factors. Soil pH was the most important factor associated with the variations in bacterial richness and evenness, while mean annual temperature explained the major variations in fungal richness. Our results addressed that the varieties of elevational patterns of microbial diversity in climatic zones and taxonomic levels, further indicating that richness and evenness may respond differently to environmental gradients.

3.
Materials (Basel) ; 16(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570063

RESUMO

The strip filling method in underground reservoir needs high strength to achieve the requirements of water storage. In order to address the challenges associated with costly and weak filling materials, this study aimed to develop an economically efficient and high-strength gangue-based geopolymer backfill material (GBGBM). To achieve this, the Taguchi method was employed to design a series of 25 experiments, each consisting of four factors and five levels. This study focused on investigating the effects of different gangue gradation levels, sand ratios, water binder ratios (w/b), and aggregate binder ratios (a/b) on the working characteristics and unconfined compressive strength (UCS) of the GBGBM. The optimal combination of the GBGBM was determined by employing a signal-to-noise ratio (S/N)-based extreme difference and variance analysis. The results revealed that the w/b ratio exerted the most substantial influence on both the slump and UCS. Specifically, when employing a gradation of 50%, a sand ratio of 55%, an a/b ratio of 2.5, and a w/b ratio of 0.64, the slump measured 251.2 mm, the UCS at 3d reached 5.27 MPa, and the UCS at 28d amounted to 17.65 MPa. These findings indicated a remarkable improvement in early UCS by 131.14% and the late UCS by 49.45% compared to gangue-based cement backfill material (GBCBM). Additionally, this study examined the hydration products and microstructures of both GBGBM and GBCBM using X-ray diffraction (XRD), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) analyses. Significantly, the GBGBM exhibited notable advantages over the GBCBM, including a 78.16% reduction in CO2 emissions, a 73.45% decrease in energy consumption, and a 24.82% reduction in cost. These findings underscore the potential of GBGBM as a sustainable and cost-effective alternative to GBCBM.

4.
Ying Yong Sheng Tai Xue Bao ; 34(2): 349-358, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36803712

RESUMO

Fungi are an important group of soil microorganisms. Exploring the altitudinal pattern and driving factors of fungal composition and diversity is an important topic in the field of biodiversity and ecosystem function. We employed the Illumina high-throughput sequencing technology to investigate the variation and environmental control of fungal α-diversity and ß-diversity at the topsoil (0-20 cm) and subsoil (20-40 cm) across an altitudinal gra-dient of 400-1500 m in a tropical forest of Jianfengling Nature Reserve. The results showed that Ascomycota and Basidiomycota dominated soil fungal community, reaching a relative abundance of more than 90%. Fungal α-diversity at the topsoil exhibited no obvious altitudinal pattern, and that of the subsoil decreased with the increases in altitude. Higher fungal α-diversity was observed in the topsoil. Soil fungi ß-diversity was significantly affected by altitude. Morover, temperature was the driving force of the altitude pattern of fungi ß-diversity. The similarity of fungal community decreased significantly with the increases in geographical distance, but did not change with the increases in environmental distance. The similarity of rare phyla (Mortierellomycota, Mucoromycota and Rozellomycota) was significantly lower than that of rich phyla (Ascomycota and Basidiomycota), indicating that diffusion restriction determined the differentiation of fungal community structure along the altitude gradient. Our study demonstrated that the diversity of soil fungal community was affected by altitude. The rare phyla, rather than rich phyla, determined the altitudinal variation of fungi ß-diversity in Jianfengling tropical forest.


Assuntos
Ecossistema , Micobioma , Solo/química , Microbiologia do Solo , Florestas , Fungos , China
5.
Huan Jing Ke Xue ; 43(8): 4364-4371, 2022 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-35971732

RESUMO

Microbial carbon use efficiency (CUE) refers to the C transformation to microbial biomass from C uptake. The study of soil microbial CUE is very important for understanding the soil C cycle. Here, CUE, Cgrowth, and Crespiration were measured using the 18O-H2O-DNA labeling method at six elevational sites (980-1765 m) in Daiyun Mountain, a subtropical montane forest, to understand the variation characteristics and influencing mechanisms. The results showed that:CUE varied from 0.1 to 0.4 and increased linearly with elevation; CUE was positively correlated with Cgrowth, Crespiration, and qgrowth but negatively correlated with qCO2, indicating that CUE increased with elevation by increasing microbial growth and inhibiting respiration; and temperature was the first controlling factor for the elevation variation in microbial CUE in the subtropical forest ecosystem.


Assuntos
Carbono , Solo , Biomassa , Ecossistema , Florestas , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...