Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 456: 139995, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38852442

RESUMO

The natural flavor of sea cucumber is generally not easily accepted by consumers. In this study, the effect of different cooking conditions on the adsorption of the characteristic flavor of Sichuan pepper by sea cucumber was investigated by response surface methodology, and the optimal cooking conditions were identified. A total of 45 volatiles were identified based on gas chromatography-mass spectrometry, of which 27 were key flavor actives. Low-field nuclear magnetic resonance and textural analysis showed that the addition of Sichuan pepper during the cooking process affected the water migration and the textural properties of sea cucumbers. It was shown that the addition of Sichuan pepper could significantly improve the flavor and other quality characteristics of sea cucumber. This study has important practical guiding significance for the flavor improvement and product innovation of sea cucumber food.

2.
Food Funct ; 15(12): 6692-6704, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38828499

RESUMO

Recently, the investigation of neuroprotective peptides has gained attention in addressing memory impairment and cognitive decline. Although the potential neuroprotective peptide Serine-Phenylalanine-Glycine-Aspartic acid-Isoleucine (SFGDI) has been identified from sea cucumber, the molecular mechanisms remain unclear. This study was conducted to explore the neuroprotection of SFGDI against 3-TYP-induced oxidative stress in BV2 cells. The results showed a retention rate of 76.70% during in vitro simulated gastrointestinal digestion and an absorption rate of 10.41% in a rat-everted gut sac model for SFGDI. Two hours following the administration of SFGDI via gavage in mice, a notable fluorescence was observed in the brain, indicating a potential neuroprotection of SFGDI through its interactions with nerve cells. By utilizing a model of oxidative stress injury induced by 3-TYP in BV2 cells, it was determined that pretreatment with SFGDI (50-200 µg mL-1) resulted in a dose-dependent reduction in the acetylated SOD level, leading to enhanced SOD activity and reduced levels of ROS and MDA. In addition, this pretreatment triggered an increase in unsaturated lipid levels, which helped maintain the intracellular lipid metabolism balance and preserve the mitochondrial function and glycolysis levels to regulate energy metabolism. The results of this study indicate that SFGDI demonstrates neuroprotective properties through its modulation of the Sirt3/SOD/ROS pathway, regulation of lipid metabolism, and enhancement of energy metabolism in BV2 cells. These findings suggest potential novel therapeutic approaches for addressing Sirt3-related memory deficits and neurodegenerative disorders.


Assuntos
Metabolismo Energético , Fármacos Neuroprotetores , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sirtuína 3 , Superóxido Dismutase , Animais , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Fármacos Neuroprotetores/farmacologia , Camundongos , Metabolismo Energético/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Masculino , Linhagem Celular , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
3.
J Agric Food Chem ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885638

RESUMO

As a key component of cell-cultured fish, fish skin gelatin (FSG)-based cell scaffold provides support structures for cell growth, proliferation, and differentiation. However, there are potential allergenicity risks contained in FSG-based scaffolds. In this study, 3D edible scaffolds were prepared by phase separation method and showed a contact angle of less than 90°, which indicated that the scaffolds were favorable for cell adhesion. Besides, the swelling ratio was greater than 200%, implying a great potential to support cell growth. The sequence homology analysis indicated that FSG was prone to cross-reaction with collagen analogues. Additionally, a food allergic model was constructed and represented that mice gavaged with cod FSG exhibited higher levels of specific antibodies, mast cell degranulation, vascular permeability, and intestinal barrier impairment than those gavaged with pangasius and tilapias FSG. Its higher allergenicity might be attributed to a higher number of digestion-resistant linear epitopes. Moreover, the higher hydrolysis degree linked to the exposure of linear epitopes to promote the combination with IgE, which was also responsible for maintaining the higher allergenicity of cod FSG. This study clarifies allergenic risks in cell-cultured fish and further study will focus on the allergenicity reduction of FSG-based cell scaffolds.

4.
ACS Appl Mater Interfaces ; 16(21): 27668-27683, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38748922

RESUMO

Micro/nanomotors (MNMs) are miniature devices that can generate energy through chemical reactions or physical processes, utilizing this energy for movement. By virtue of their small size, self-propulsion, precise positioning within a small range, and ability to access microenvironments, MNMs have been applied in various fields including sensing, biomedical applications, and pollutant adsorption. However, the development of food-grade MNMs and their application in food delivery systems have been scarcely reported. Currently, there are various issues with the decomposition, oxidation, or inability to maintain the activity of some nutrients or bioactive substances, such as the limited application of curcumin (Cur) in food. Compared to traditional delivery systems, MNMs can adjust the transport speed and direction as needed, effectively protecting bioactive substances during delivery and achieving efficient transportation. Therefore, this study utilizes polysaccharides as the substrate, employing a simple, rapid, and pollution-free template method to prepare polysaccharide-based microtubes (PMTs) and polysaccharide-based micro/nanomotors (PMNMs). PMNMs can achieve multifunctional propulsion by modifying ferrosoferric oxide (Fe3O4), platinum (Pt), and glucose oxidase (GOx). Fe-PMNMs and Pt-PMNMs exhibit excellent photothermal conversion performance, showing promise for applications in photothermal therapy. Moreover, PMNMs can effectively deliver curcumin, achieving the effective delivery of nutrients and exerting the anti-inflammatory performance of the system.


Assuntos
Curcumina , Polissacarídeos , Curcumina/química , Polissacarídeos/química , Animais , Camundongos , Platina/química , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Óxido Ferroso-Férrico/química , Humanos , Ingredientes de Alimentos/análise
5.
Food Chem ; 450: 139359, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631204

RESUMO

The effects of different thermal sterilization conditions on the quality and digestibility of ready-to-eat (RTE) shrimp were investigated. Compared with the high-temperature (121 °C) and short-time (6 min and 8 min) sterilization, the low-temperature (110 and 115 °C) and long-time (>20 min) sterilization significantly promoted the Maillard and browning reactions and changed the color of the RTE-shrimp. The high sterilization temperature promoted shrimp protein oxidation, resulting in increased carbonyl group, disulfide bond, and free radical content, while the free sulfhydryl group content decreased. This oxidation and tissue destruction at high temperature led to reduced texture properties and altered water distribution within the shrimp's muscles. However, sterilized shrimp exhibited superior digestive properties in an in vitro simulated digestion experiment. High-temperature and short-time sterilization is more effective in mitigating the quality deterioration of RTE-shrimp compared to low-temperature and long-time sterilization.


Assuntos
Temperatura Alta , Penaeidae , Frutos do Mar , Esterilização , Animais , Penaeidae/química , Frutos do Mar/análise , Fast Foods/análise , Oxirredução , Manipulação de Alimentos , Digestão
6.
J Agric Food Chem ; 72(18): 10627-10639, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38664940

RESUMO

Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and ß-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from ß-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.


Assuntos
Alérgenos , Leite de Soja , Subtilisinas , Humanos , Alérgenos/química , Alérgenos/imunologia , Alérgenos/metabolismo , Hipersensibilidade Alimentar/prevenção & controle , Hipersensibilidade Alimentar/imunologia , Globulinas/química , Globulinas/imunologia , Hidrólise , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Pós/química , Leite de Soja/química , Proteínas de Soja/química , Proteínas de Soja/imunologia , Proteínas de Soja/metabolismo , Relação Estrutura-Atividade , Subtilisinas/metabolismo
7.
Nutrients ; 16(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38613052

RESUMO

Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.


Assuntos
Dipeptídeos , Euphausiacea , Animais , Camundongos , Metabolismo dos Lipídeos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Derivados da Escopolamina , Hipocampo , Lipídeos
8.
J Agric Food Chem ; 72(15): 8491-8505, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587859

RESUMO

Aging and stress have contributed to the development of memory disorders. Phe-Pro-Phe (FPF) was identified with high stability by mass spectrometry from simulated gastrointestinal digestion and everted gut sac products of the Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) which was found to have a positive impact on memory enhancement. This study investigated the digestive stability, absorption, and memory-enhancing effects of FPF using nuclear magnetic resonance spectroscopy, simulated gastrointestinal digestion, in vivo fluorescence distribution analysis, mouse behavioral experiments, acetylcholine function, Nissl staining, immunofluorescence, and immunohistochemistry. FPF crossed the blood-brain barrier into the brain after digestion, significantly reduced shock time, working memory errors, and reference memory errors, and increased the recognition index. Additionally, FPF elevated ACh content; Nissl body counts; and CREB, SYN, and PSD-95 expression levels, while reducing AChE activity (P < 0.05). This implies that FPF prevents scopolamine-induced memory impairment and provides a basis for future research on memory disorders.


Assuntos
Euphausiacea , Animais , Camundongos , Sequência de Aminoácidos , Peptídeos/química , Acetilcolina , Transtornos da Memória
9.
J Agric Food Chem ; 72(13): 7517-7532, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38527166

RESUMO

In this study, the molecular mechanisms of iron transport and homeostasis regulated by the Antarctic krill-derived heptapeptide-iron (LVDDHFL-iron) complex were explored. LVDDHFL-iron significantly increased the hemoglobin, serum iron, total iron binding capacity levels, and iron contents in the liver and spleen to normal levels, regulated the gene expressions of iron homeostasis, and enhanced in vivo antioxidant capacity in iron-deficiency anemia mice (P < 0.05). The results revealed that iron ions within LVDDHFL-iron can be transported via the heme transporter and divalent metal transporter-1, and the absorption of LVDDHFL-iron involved receptor-mediated endocytosis. We also found that the transport of LVDDHFL-iron across cells via phagocytosis was facilitated by the up-regulation of the high mobility group protein, heat shock protein ß, and V-type proton ATPase subunit, accompanied by the regulatory mechanism of autophagy. These findings provided deeper understandings of the mechanism of LVDDHFL-iron facilitating iron absorption.


Assuntos
Anemia Ferropriva , Euphausiacea , Camundongos , Animais , Ferro/metabolismo , Anemia Ferropriva/metabolismo , Fígado/metabolismo , Homeostase/fisiologia
10.
Foods ; 13(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38472789

RESUMO

This study systematically investigates the impact of corn starch molecular structures on the quality attributes of surimi gel products. Employing molecular analyses to characterize corn starch, three amylopectin fractions (A, B1, and B2), categorized by the degree of polymerization ranges (6 < X ≤ 12, 12 < X ≤ 24, and 24 < X ≤ 36, respectively) were specifically focused on. The surimi gel quality was comprehensively assessed through texture profile analysis, nuclear magnetic resonance, scanning electron microscopy, stained section analysis, and Fourier transform infrared spectroscopy. Results indicated the substantial volume expansion of corn amylopectin upon water absorption, effectively occupying the surimi gel matrix and fostering the development of a more densely packed protein network. Starch gels with higher proportions of A, B1, and B2 exhibited improved hardness, chewiness, and bound water content in the resultant surimi gels. The weight-average molecular weight and peak molecular weight of corn starch showed a strong positive correlation with surimi gel hardness and chewiness. Notably, the secondary structure of proteins within the surimi gel was found to be independent of corn starch's molecular structure. This study provides valuable insights for optimizing formulations in surimi gel products, emphasizing the significance of elevated A, B1, and B2 content in corn starch as an optimal choice for crafting dense, chewy, water-retaining surimi gels.

11.
Food Chem ; 444: 138689, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38350164

RESUMO

The improvement effects of Lentinus edodes powder (LEP) marination with different concentrations (0, 6-14 %) on physicochemical, oxidative and flavor quality of chicken patties were evaluated. Greater pH, redness, yellowness, water holding capacity and their strong correlations were observed in LEP-marinated samples. Changed water distribution, inhibited lipid oxidation and enhanced protein oxidation occurred through LEP marination. The highest gel strength and resilience and the lowest hardness and chewiness were obtained in 10 % LEP-marinated sample. Meanwhile, taste activity values of amino acids and saltiness peaked and umami rose in this sample. 124 volatiles were detected and 16 compounds were simultaneously detected by gas chromatography-ion mobility spectrometry and gas chromatography-mass spectrometry. Hexanal, 1,2,4-trithiolane and 1-hexanol were considered as the key differential aroma-active compounds according to odor activity values and chemometric analysis. This study confirmed LEP as a prospective ingredient to improve the quality of meat products.


Assuntos
Galinhas , Cogumelos Shiitake , Animais , Pós , Estudos Prospectivos , Cromatografia Gasosa-Espectrometria de Massas , Água , Estresse Oxidativo
12.
Eur J Pharmacol ; 968: 176430, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38369274

RESUMO

Memory impairment affects cognition and information processing, and attention, leading to a decline in life quality of patients. Previous studies have shown the memory-improving effects of sea cucumber peptides. This study further explored the memory-improving mechanisms of sea cucumber peptides using scopolamine-induced memory-impaired mice and identified novel memory-improving peptides within low molecular weight peptide fractions. The sea cucumber peptides were categorized into three groups based on their molecular weights: SCP-L (molecular weight greater than 10 kDa), SCP-M (weight between 3 kDa and 10 kDa), and SCP-S (molecular weight less than 3 kDa). The results showed that SCP-S improved behavioral performance by regulating cholinergic system disorder and reducing oxidative stress levels, distinguishing itself from SCP-M and SCP-L. Further, SCP-S was found to exhibit a well ability in alleviating the degree of neuroinflammation dependent on microglia and promoting synaptic plasticity. Additionally, a novel memory-improving peptide Ser-Phe-Gly-Asp-Ile (SFGDI) was identified by EASY-nano-LC/MS/MS after simulated digestion-absorption coupling of in silico technologies from SCP-S. SFGDI protected against oxidative stress and regulated cholinergic system in scopolamine-induced PC12 cells. These findings suggest that SCP-S and SFGDI might be considered as potential memory-improving food for people suffering from memory disorders.


Assuntos
Escopolamina , Pepinos-do-Mar , Ratos , Humanos , Camundongos , Animais , Escopolamina/farmacologia , Espectrometria de Massas em Tandem , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Estresse Oxidativo , Colinérgicos/farmacologia
13.
Food Chem ; 441: 138394, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38199115

RESUMO

Eel is a commercially important marine fish, frequently featured as sushi or roasted preparations. This study determined the formation of heterocyclic amines (HAs) and advanced glycation end products (AGEs) in roasted eel and evaluated the inhibitory mechanism of quercetin and l-ascorbic acid on their formation. The results indicate a respective reduction of 75.07% and 84.72% in total HAs, alongside a decline of 23.03% and 39.14% in AGEs. Additionally, fundamental parameters of roasted eel, lipid oxidation indicators and precursors were measured to elucidate the mechanisms and impact of natural antioxidants on HAs and AGEs formation in roasted eel. Furthermore, endeavors were made to probe into the molecular mechanisms governing the influence of key differential lipids on the generation of HAs and AGEs through lipid-mics analysis. This research emphasizes the potential of natural antioxidants in preventing harmful substances formation during eel thermal processing, which is helpful to food manufacturers for healthier food production.


Assuntos
Ácido Ascórbico , Quercetina , Animais , Quercetina/farmacologia , Ácido Ascórbico/farmacologia , Antioxidantes/farmacologia , Aminas , Produtos Finais de Glicação Avançada/farmacologia , Enguias , Lipídeos
14.
J Agric Food Chem ; 72(4): 2229-2239, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38230629

RESUMO

By analyzing the folic acid content of various mouse strains through the use of in vivo studies, this study sought to determine whether folic acid bioavailability varies between hosts. In order to examine the stability of folic acid in the gastrointestinal tract, the rate at which it enters the blood, its retention in the organs, and its entry into the brain, folic acid was gavaged for 10 days into male and female mice of the following four strains: C57BL/6, BALB/c, ICR, and Kunming. Folic acid was extracted from eight groups of mice via solid phase extraction and triple enzyme extraction; the folic acid was subsequently quantified by ultraperformance liquid chromatography. In contrast to the other groups, female C57BL/6 mice exhibited substantially greater bioavailability as well as variations in organ retention and blood entry rates, as indicated by the experimental findings. This finding indicated that using female C57BL/6 mice to evaluate the bioavailability of folic acid is more effective.


Assuntos
Digestão , Ácido Fólico , Masculino , Feminino , Camundongos , Animais , Cromatografia Líquida de Alta Pressão , Disponibilidade Biológica , Camundongos Endogâmicos ICR , Camundongos Endogâmicos C57BL
15.
Int J Biol Macromol ; 261(Pt 1): 129695, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280703

RESUMO

The study focused on the regulation of ovalbumin (OVA) allergenicity using pulsed electric field (PEF) technology and examined the structure-activity link. Following PEF treatment, the ability of OVA to bind to IgE and IgG1 at 6 kHz was inhibited by 30.41 %. According to the microstructure, PEF caused cracks on the OVA surface. Spectral analysis revealed a blue shift in the amide I band and a decrease in α-helix and ß-sheet content indicating that the structure of OVA was unfolded. The disulfide bond conformation was transformed and the structure tended to be disordered. The increased fluorescence intensity indicated that tryptophan and tyrosine were exposed which led an increase in hydrophobicity. In addition, the results of molecular dynamics (MD) simulations confirmed that the stability of OVA was reduced after PEF, which was related to the reduction of hydrogen bonding and the sharp fluctuation of aspartic acid. Therefore, PEF treatment induced the exposure of hydrophobic amino acids and the transformation of disulfide bond configuration which in turn masked or destroyed allergenic epitopes, and ultimately inhibited OVA allergenicity. This study provided insightful information for the production of hypoallergenic eggs and promoted the use of PEF techniques in the food field.


Assuntos
Alérgenos , Eletricidade , Ovalbumina/química , Alérgenos/química , Ovos , Dissulfetos
16.
Food Chem ; 438: 137920, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38000156

RESUMO

The digestion products of Penaeus vannamei still had sensitizing and eliciting capacity; however, the underlying mechanism has not been identified. This study analyzed the structural changes of shrimp proteins during digestion, predicted the linearmimotopepeptides and first validated the allergenicity of immunodominantepitopes with binding ability. The results showed that the shrimp proteins were gradually degraded into small peptides during digestion, which might lead to the destruction of linear epitopes. However, these peptides carried IgE epitopes that still trigger allergic reactions. Eighteen digestion-resistant epitopes were predicted by multiple immunoinformatics tools and digestomics. Five epitopes contained more critical amino acids and had strong molecular docking (P1: DSGVGIYAPDAEA, P2: EGELKGTYYPLTGM, P3: GRQGDPHGKFDLPPGV, P4: IFAWPHKDNNGIE, P5: KSTESSVTVPDVPSIHD), and these epitopes were identified as novel IgE binding immunodominantepitopes in Penaeus vannamei. These findings provide novel insight into allergenic epitopes, which might serve as key targets for reducing the allergenicity in shrimp.


Assuntos
Penaeidae , Animais , Sequência de Aminoácidos , Epitopos Imunodominantes , Alérgenos/química , Simulação de Acoplamento Molecular , Imunoglobulina E , Peptídeos , Epitopos/química , Digestão , Tropomiosina/química
17.
J Agric Food Chem ; 71(48): 18722-18734, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37980612

RESUMO

Ethanolic gastric mucosal impairment is one of the most common disorders in the gastrointestinal system. In this study, we investigated the potential alleviating effects of sea cucumber peptides on Ges-1 impairment caused by ethanol and the associated mechanisms. The sea cucumber peptide VLLY could promote the proliferation and migration of healthy Ges-1 cells. After ethanol injury, VLLY peptide treatment could greatly promote the migration of Ges-1 cells, scavenge intracellular and mitochondrial ROS, reverse mitochondrial fission and F-actin depolymerization, and improve mitochondrial respiration. VLLY peptide restored mitochondrial dynamics by downregulating Drp1 and Fis1 and upregulating Mfn2 against excessive mitochondrial fission. In addition, the VLLY peptide maintained the mitochondrial membrane potential, ablated the leakage of cytochrome c to the cytoplasm, upregulated the expression of the antiapoptotic factor Bcl-XL, decreased the expression of the proapoptotic factors of Bax, BAD, and cleaved caspase-3, and finally blocked the mitochondria-related apoptotic pathway. These findings strongly suggested that sea cucumber peptides could promote proliferation and migration of healthy Ges-1 cells and reverse ethanol-induced excess mitochondrial fission and maintain mitochondrial homeostasis through the Fis1/Bax pathway, thereby improving ethanol-induced apoptosis. VLLY offers a new perspective for improving the ethanolic gastric mucosal epithelial cell injury.


Assuntos
Apoptose , Dinâmica Mitocondrial , Proteína X Associada a bcl-2/metabolismo , Etanol
18.
J Texture Stud ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37921240

RESUMO

The aim of this study was to investigate the effects of grape seed extract (GSE), acerola cherry extract (ACE), and blueberry extract (BBE) on the physicochemical properties and structure of the yellow croaker surimi gel. In addition, molecular docking and molecular dynamics (MD) simulation were utilized to study the binding mechanism of yellow croaker's fibrillin and fruit extracts. Surimi gel with 1.5% GSE, ACE, and BBE had the highest water holding capacity, hardness, chewability, cohesion, breaking force, breaking distance, gel strength, and densest 3D network structure, according to the experiment's findings. Nevertheless, the cross-linking of proteins in surimi was blocked with the further increase of fruit extract (1.5%-2.0%), and the existing network of surimi was weakened or even destroyed. Three fruit extracts had little effect on the secondary structure of the surimi gel. Besides, hydrophobic and disulfide bonds are the main chemical bonds of croaker surimi. Molecular docking showed that B-type procyanidine (BP) interacted with ASN-183, SER-571, ASP-525, ARG-350, LYS-188, GLU-349, CYS-353, and other active amino acids in croaker protein. Moreover, it can form strong hydrogen bond interaction with ASN-183, SER-571, ASP-525, and ARG-350 at the active sites of protein. The BP-Larimichthys crocea protein system's MD simulation was carried out, and calculations for the simulation's root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessible surface area, and hydrogen bonds were made. It was found that these indices can demonstrate that the BP binding contributes to the stability of the yellow croaker structure.

19.
J Agric Food Chem ; 71(48): 18815-18828, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991338

RESUMO

Soy allergens are susceptible to inducing allergic reactions in infants and young animals, which have an impact on the effective daily utilization of proteins. In this study, we used Alcalase-hydrolyzed instant soybean powder (ISP) to clarify the sensitization changes of instant soybean powder hydrolysates (ISPH), and we explored the assisted memory-enhancing effects. BALB/c mice in the ISPH group showed significant improvement in the allergy symptoms, with their allergy symptom scores decreasing to (1.57 ± 0.53) and their specific serum IgE and IgG1 binding capacity decreasing by 28.00 and 25.73% (P < 0.05), which suppressed the mast cell degranulation rate. Meanwhile, the plasma HIS and IL-4 levels decreased by 12.59 and 25.32%, and the plasma INF-γ and IL- 10 levels increased by 30.64 and 27.79%, which obviously regulated the imbalance of Th1/Th2 cells and attenuated the tissue damage (P < 0.05). Furthermore, ISPH improved behavioral characteristics, increased cholinergic system activity, reduced neuronal cell damage or apoptosis, and increased the number of Nissl bodies to help improve memory in Kunming mice (P < 0.05). In general, alcalase-hydrolyzed ISP had the dual effects of reducing allergenicity and aiding in memory improvement.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade , Humanos , Camundongos , Lactente , Animais , Glycine max , Alérgenos , Pós , Imunoglobulina E , Subtilisinas , Camundongos Endogâmicos BALB C , Proteínas de Soja
20.
J Agric Food Chem ; 71(44): 16739-16751, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37897700

RESUMO

Although tropomyosin has been identified as a major allergen in Antarctic krill, the digestive fate of Antarctic krill tropomyosin and its relationship with allergenicity are unknown. In this study, Antarctic krill tropomyosin was administered to BALB/c mice via both gavage and intraperitoneal injection to explore its sensitizing and eliciting capacity, and its digestion products were analyzed for structural changes and digestion-resistant linear epitopes. Mice gavaged with tropomyosin exhibited lower levels of specific IgE and IgG1, mast cell degranulation, vascular permeability, and anaphylaxis symptoms than those in the intraperitoneal injection group. This may be due to the destruction of macromolecular aggregates, loose expansion of the tertiary structure, complete disappearance of α-helix, and significant changes in molecular force upon the digestion of tropomyosin. Nevertheless, the intragastric administration of Antarctic krill tropomyosin still triggered strong allergic reactions, which was attributed to the existence of seven digestion-resistant linear epitopes (Glu26-His44, Thr111-Arg125, Glu157-Glu164, Glu177-Gly186, Val209-Ile225, Arg244-Arg255, and Val261-Ile270).


Assuntos
Euphausiacea , Animais , Camundongos , Euphausiacea/química , Tropomiosina/genética , Alérgenos/genética , Alimentos Marinhos , Digestão , Regiões Antárticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...