Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 477: 116697, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37734572

RESUMO

Arsenic exposure is associated with an increased risk of many cancers, and epigenetic mechanisms play a crucial role in arsenic-mediated carcinogenesis. Our previous studies have shown that arsenic exposure induces polyadenylation of H3.1 mRNA and inhibits the deposition of H3.3 at critical gene regulatory elements. However, the precise underling mechanisms are not yet understood. To characterize the factors governing arsenic-induced inhibition of H3.3 assembly through H3.1 mRNA polyadenylation, we utilized mass spectrometry to identify the proteins, especially histone chaperones, with reduced binding affinity to H3.3 under conditions of arsenic exposure and polyadenylated H3.1 mRNA overexpression. Our findings reveal that the interaction between H3.3 and the histone chaperon protein MCM2 is diminished by both polyadenylated H3.1 mRNA overexpression and arsenic treatment in human lung epithelial BEAS-2B cells. The increased binding of MCM2 to H3.1, resulting from elevated H3.1 protein levels, appears to contribute to the reduced availability of MCM2 for H3.3. To further investigate the role of MCM2 in H3.3 deposition during arsenic exposure and H3.1 mRNA polyadenylation, we overexpressed MCM2 in BEAS-2B cells overexpressing polyadenylated H3.1 or exposed to arsenic. Our results demonstrate that MCM2 overexpression attenuates H3.3 depletion at several genomic loci, suggesting its involvement in the arsenic-induced displacement of H3.3 mediated by H3.1 mRNA polyadenylation. These findings suggest that changes in the association between histone chaperone MCM2 and H3.3 due to polyadenylation of H3.1 mRNA may play a pivotal role in arsenic-induced carcinogenesis.


Assuntos
Arsênio , Humanos , Arsênio/toxicidade , Arsênio/química , Chaperonas de Histonas/genética , Carcinogênese , Genômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Componente 2 do Complexo de Manutenção de Minicromossomo/química , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo
2.
Curr Genet ; 63(5): 923-930, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28382430

RESUMO

Cohesin is one of three multi-protein structural maintenance of chromosome (SMC) complexes that regulate eukaryotic chromosome dynamics. It forms a ring-shaped structure that embraces sister chromatids through interphase to promote their pairing. In preparation for mitosis, most cohesin is stripped from the chromosome arms in prophase by a poorly defined process that is associated with cohesin phosphorylation. In the fission yeast Schizosaccharomyces pombe this prophase pathway is dependent on the cohesin-related Smc5/6 complex, and this requirement is heightened in Smc5/6 hypomorphs by DNA damage, replication stress and Topoisomerase II (Top2) dysfunction. Cohesin interacts with chromosomes immediately upon mitotic exit and becomes cohesive coincident with DNA replication. Cohesiveness is promoted by acetylation of the Smc3 subunit by an acetyltransferase, known as Eso1 in the S. pombe, which counteracts the anti-cohesive function(s) of the cohesin regulators Pds5 and Wpl1. We recently showed that Eso1 and Smc5/6 antagonize each other, and concurrent inactivation restores sister chromatid separation following genotoxic stress. Here, we have investigated the relationship between Top2 and Eso1 in successful completion of mitosis. We observe that partial inactivation of both results in a synthetic lethal mitotic block, but this is not overcome by deleting pds5 or wpl1. However, analysis of both acetyl-blocking and mimetic mutations in Smc3 indicates that the cycling of cohesin acetyl-regulation is more important than acetyl-status per se, highlighting the non-linear nature of the cohesin cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos , DNA Topoisomerases Tipo II/metabolismo , Acetilação , Dano ao DNA , Replicação do DNA , Mitose/genética , Modelos Biológicos , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Mutações Sintéticas Letais/genética , Coesinas
3.
Mol Biol Cell ; 27(25): 4002-4010, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798241

RESUMO

Eukaryotes contain three essential Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin, and Smc5/6. Cohesin forms a ring-shaped structure that embraces sister chromatids to promote their cohesion. The cohesiveness of cohesin is promoted by acetylation of N-terminal lysines of the Smc3 subunit by the acetyltransferases Eco1 in Saccharomyces cerevisiae and the homologue, Eso1, in Schizosaccharomyces pombe. In both yeasts, these acetyltransferases are essential for cell viability. However, whereas nonacetylatable Smc3 mutants are lethal in S. cerevisiae, they are not in S. pombe We show that the lethality of a temperature-sensitive allele of eso1 (eso1-H17) is due to activation of the spindle assembly checkpoint (SAC) and is associated with premature centromere separation. The lack of cohesion at the centromeres does not correlate with Psm3 acetylation or cohesin levels at the centromeres, but is associated ith significantly reduced recruitment of the cohesin regulator Pds5. The SAC activation in this context is dependent on Smc5/6 function, which is required to remove cohesin from chromosome arms but not centromeres. The mitotic defects caused by Smc5/6 and Eso1 dysfunction are cosuppressed in double mutants. This identifies a novel function (or functions) for Eso1 and Smc5/6 at centromeres and extends the functional relationships between these SMC complexes.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/enzimologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Acetiltransferases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/genética , Cromátides/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos Fúngicos/enzimologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Proteínas Nucleares/genética , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Coesinas
4.
Chromosoma ; 123(5): 437-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24981336

RESUMO

Chromosomes are subjected to massive reengineering as they are replicated, transcribed, repaired, condensed, and segregated into daughter cells. Among the engineers are three large protein complexes collectively known as the structural maintenance of chromosome (SMC) complexes: cohesin, condensin, and Smc5/6. As their names suggest, cohesin controls sister chromatid cohesion, condensin controls chromosome condensation, and while precise functions for Smc5/6 have remained somewhat elusive, most reports have focused on the control of recombinational DNA repair. Here, we focus on cohesin and Smc5/6 function. It is becoming increasingly clear that the functional repertoires of these complexes are greater than sister chromatid cohesion and recombination. These SMC complexes are emerging as interrelated and cooperating factors that control chromosome dynamics throughout interphase. However, they also release their embrace of sister chromatids to enable their segregation at anaphase, resetting the dynamic cycle of SMC-chromosome interactions.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Humanos , Mitose , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Coesinas
5.
Mol Cell Biol ; 34(11): 2092-104, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687850

RESUMO

Structural maintenance of chromosomes (SMC) complexes and DNA topoisomerases are major determinants of chromosome structure and dynamics. The cohesin complex embraces sister chromatids throughout interphase, but during mitosis most cohesin is stripped from chromosome arms by early prophase, while the remaining cohesin at kinetochores is cleaved at anaphase. This two-step removal of cohesin is required for sister chromatids to separate. The cohesin-related Smc5/6 complex has been studied mostly as a determinant of DNA repair via homologous recombination. However, chromosome segregation fails in Smc5/6 null mutants or cells treated with small interfering RNAs. This also occurs in Smc5/6 hypomorphs in the fission yeast Schizosaccharomyces pombe following genotoxic and replication stress, or topoisomerase II dysfunction, and these mitotic defects are due to the postanaphase retention of cohesin on chromosome arms. Here we show that mitotic and repair roles for Smc5/6 are genetically separable in S. pombe. Further, we identified the histone variant H2A.Z as a critical factor to modulate cohesin dynamics, and cells lacking H2A.Z suppress the mitotic defects conferred by Smc5/6 dysfunction. Together, H2A.Z and the SMC complexes ensure genome integrity through accurate chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Histonas/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Acetilação , Proteínas de Ciclo Celular/genética , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Dano ao DNA/genética , Reparo do DNA/genética , DNA Topoisomerases Tipo II/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Mitose/genética , Mutação , Interferência de RNA , RNA Interferente Pequeno , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Coesinas
6.
PLoS Genet ; 8(6): e1002801, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22761595

RESUMO

DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show that Schizosaccharomyces pombe Rad4(TopBP1) AAD-defective strains are DNA damage sensitive during G1/S-phase, but not during G2. Using lacO-LacI tethering, we developed a DNA damage-independent assay for checkpoint activation that is Rad4(TopBP1) AAD-dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb2(53BP1). Consistent with a model where Rad4(TopBP1) AAD-dependent checkpoint activation is ssDNA/RPA-independent and functions to amplify otherwise weak checkpoint signals, we demonstrate that the Rad4(TopBP1) AAD is important for Chk1 phosphorylation when resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4(TopBP1) AAD acts additively with a Rad9 AAD in G1/S phase but not G2. We propose that AAD-dependent Rad3(ATR) checkpoint amplification is particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein-chromatin interactions.


Assuntos
Cromatina/genética , Proteínas de Ligação a DNA , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Estrutura Terciária de Proteína , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Transglutaminases , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Dano ao DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína/genética , Fase S/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , Transglutaminases/genética , Transglutaminases/metabolismo
7.
Br J Nutr ; 94(4): 595-601, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16197586

RESUMO

Strenuous exercise is known to induce oxidative stress leading to the generation of free radicals. The purpose of the present study was to investigate the effects of lycopene, an antioxidant nutrient, at a relatively low dose (2.6 mg/kg per d) and a relatively high dose (7.8 mg/kg per d) on the antioxidant status of blood and skeletal muscle tissues in rats after exhaustive exercise. Rats were divided into six groups: sedentary control (C); sedentary control with low-dose lycopene (CLL); sedentary control with high-dose lycopene (CHL); exhaustive exercise (E); exhaustive exercise with low-dose lycopene (ELL); exhaustive exercise with high-dose lycopene (EHL). After 30 d, the rats in the three C groups were killed without exercise, but the rats in the three E groups were killed immediately after an exhaustive running test on a motorised treadmill. The results showed that xanthine oxidase (XO) activities of plasma and muscle, and muscular myeloperoxidase (MPO) activity in group E were significantly increased compared with group C. Compared with group E, the elevations of XO and MPO activities of muscle were significantly decreased in group EHL. The malondialdehyde concentrations of plasma and tissues in group E were significantly increased by 72 and 114 %, respectively, compared with those in group C. However, this phenomenon was prevented in rats of the ELL and EHL groups. There was no significant difference in the GSH concentrations of erythrocytes in each group; however, exhaustive exercise resulted in a significant decrease in the GSH content of muscle. In conclusion, these results suggested that lycopene protected muscle tissue from oxidative stress after exhaustive exercise.


Assuntos
Antioxidantes/administração & dosagem , Carotenoides/administração & dosagem , Músculo Esquelético/enzimologia , Peroxidase/metabolismo , Condicionamento Físico Animal , Xantina Oxidase/metabolismo , Análise de Variância , Animais , Suplementos Nutricionais , Eritrócitos/química , Eritrócitos/metabolismo , Glutationa/análise , Peroxidação de Lipídeos , Fígado/metabolismo , Licopeno , Masculino , Modelos Animais , Fadiga Muscular , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Peroxidase/análise , Ratos , Ratos Sprague-Dawley , Ácido Úrico/sangue , Xantina Oxidase/análise
8.
World J Gastroenterol ; 11(46): 7272-6, 2005 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-16437627

RESUMO

AIM: To investigate dose-response and time-course of the effects of ethanol on the cell viability and antioxidant capacity in isolated rat hepatocytes. METHODS: Hepatocytes were isolated from male adult Wistar rats and seeded into 100-mm dishes. Hepatocytes were treated with ethanol at concentrations between 0 (C), 10 (E10), 50 (E50), and 100 (E100) mmol/L (dose response) for 12, 24, and 36 h (time course). Then, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) concentration, glutathione (GSH) level, and activities of glutathione peroxidase (GPX), glutathione reductase (GRD), superoxide dismutase (SOD), and catalase (CAT) were measured. RESULTS: Our data revealed that LDH leakage was significantly increased by about 30% in group E100 over those in groups C and E10 at 24 and 36 h, The MDA concentration in groups C, E10 and E50 were significantly lower than that in group E100 at 36 h. Furthermore, the concentration of MDA in group E100 at 36 h was significantly higher by 4.5- and 1.7-fold, respectively, than that at 12 and 24 h. On the other hand, the GSH level in group E100 at 24 and 36 h was significantly decreased, by 32% and 28%, respectively, compared to that at 12 h. The activities of GRD and CAT in group E100 at 36 h were significantly less than those in groups C and E10. However, The GPX and SOD activities showed no significant change in each group. CONCLUSION: These results suggest that long-time incubation with higher concentration of ethanol (100 mmol/L) decreased the cell viability by means of reducing GRD and CAT activities and increasing lipid peroxidation.


Assuntos
Antioxidantes/metabolismo , Etanol/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Animais , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...