Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(4): e62283, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23638024

RESUMO

RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3' direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) -1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate-1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for-1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing-1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study's findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.


Assuntos
Pareamento de Bases , Mudança da Fase de Leitura do Gene Ribossômico , Sequências Repetidas Invertidas , RNA Viral/química , RNA Viral/genética , Sequência de Bases , Motivos de Nucleotídeos , Estabilidade de RNA , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Saccharomyces cerevisiae/genética
2.
RNA ; 16(6): 1236-44, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20435898

RESUMO

Specific recognition of metabolites by functional RNA motifs within mRNAs has emerged as a crucial regulatory strategy for feedback control of biochemical reactions. Such riboswitches have been demonstrated to regulate different gene expression processes, including transcriptional termination and translational initiation in prokaryotic cells, as well as splicing in eukaryotic cells. The regulatory process is usually mediated by modulating the accessibility of specific sequence information of the expression platforms via metabolite-induced RNA conformational rearrangement. In eukaryotic systems, viral and the more limited number of cellular decoding -1 programmed ribosomal frameshifting (PRF) are commonly promoted by a 3' mRNA pseudoknot. In addition, such -1 PRF is generally constitutive rather than being regulatory, and usually results in a fixed ratio of products. We report here an RNA pseudoknot capable of stimulating -1 PRF whose efficiency can be tuned in response to the concentration of S-adenosylhomocysteine (SAH), and the improvement of its frameshifting efficiency by RNA engineering. In addition to providing an alternative approach for small-molecule regulation of gene expression in eukaryotic cells, such a metabolite-responsive pseudoknot suggests a plausible mechanism for metabolite-driven translational regulation of gene expression in eukaryotic systems.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA/genética , Adenosil-Homocisteinase/metabolismo , Sequência de Bases , Técnicas de Cultura de Células , Linhagem Celular , Expressão Gênica , HIV-1/genética , Humanos , Rim/embriologia , Luciferases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Biossíntese de Proteínas , RNA/química , RNA/metabolismo , RNA Catalítico/genética , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...