Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38068244

RESUMO

This paper presents an innovative method of producing a low-density, high-strength, thin cement sheet. A seaweed powder was mixed with Portland cement, a foaming agent, calcium sulfoaluminate (CSA), and a quantity of water to create an A4-sized thin sheet with a thickness of 7 mm, which can withstand 1.5 kg in weight. This sheet was then covered with ethylene vinyl acetate and a backsheet to create a sandwiched cement sheet. The advantages of this sandwiched cement sheet are two-fold. First, it can support up to 13 kg in a static mechanical loading test, without bending, for over eight hours. Second, it can be quickly recovered at the end of its life cycle. This was a preliminary experiment to produce a large cement sheet that could satisfy the loading requirements for a solar panel. The purpose of the large, thin cement sheet is to replace the glass in a conventional solar panel and create a lightweight solar panel of less than 10 kg, which would mean that the installation of solar panels would become a one-person operation rather than a two-person operation. It would also increase the efficiency of the solar panel installation process.

2.
Materials (Basel) ; 15(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431613

RESUMO

A car muffler is a device to improve car noise emission. Some conventional mufflers use layers of glass fiber as a material to absorb noise. However, filling glass fiber is an environmentally unfriendly work, mainly manually filling with chop strand fiber. This research selected a composite material of glass fiber and foam concrete to replace chop strand fiber to avoid this hazard and maintain the muffler's good noise reduction performance. A response surface methodology with a two-way factorial experimental design repeated the center point twice is performed. The density of the foamed concrete and the weight of the glass fiber is being considered in order to determine the nearly optimal combination of the values in two factors. The response variable is the loudness sensation in Sone of the noise generated from the muffler. At present, the lowest loudness sensation from the two-way factorial design is 16.6494 Sones, which occurred for a muffler with a formula combination of a density of 0.2 g/cm3 and 40 g of glass fiber. The significance of this paper is the presentation of a new application of foam concrete to the green muffler design. To the best of our knowledge, this unique area has never been tackled in the material application of concrete. We have discovered that foam concrete indeed does an excellent job in terms of noise reduction as compared with that of a market muffler.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...