Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 236: 111974, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36027844

RESUMO

Excessive molybdenum (Mo) and cadmium (Cd) are toxic environmental pollutants. Our previous research confirmed excessive Mo and Cd co-induced calcium homeostasis disorder and autophagy in duck kidneys, but how calcium ion (Ca2+) regulates autophagy is unclear. The results revealed that the Mo- and/or Cd-induced cytosolic Ca2+ concentration ([Ca2+]c) increase mainly came from intracellular calcium stores. Mo and/or Cd caused mitochondrial Ca2+ content ([Ca2+]mit) and [Ca2+]c increase with endoplasmic reticulum (ER) Ca2+ content ([Ca2+]ER) decrease and upregulated calcium homeostasis-related factor expression levels, but 2-Aminoethoxydiphenyl borate (2-APB) reversed subcellular Ca2+ redistribution. Increased Phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) activities and inositol 1,4,5-trisphosphate receptor (IP3R) expression level were observed in Mo- and/or Cd-treated cells, which was reversed by the PLC inhibitor U-73122. 2-APB and 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) addition mitigated [Ca2+]c and autophagy (variations in microtubule-associated protein light chain 3 (LC3), LC3B-II/LC3B-I, autophagy related 5 (ATG5), sequestosome-1(P62), programmed cell death-1 (Beclin-1) and Dynein expression levels, LC3 puncta, autophagosomes and acid vesicle organelles) under Mo and/or Cd treatment, respectively, while thapsigargin (TG) had the opposite impacts. Additionally, the calmodulin-dependent protein kinase kinase ß (CaMKKß) inhibitor STO-609 reversed the increased CaMKKß, adenosine 5'-monophosphate-activated protein kinase (AMPK), Beclin-1, and LC3B-II/LC3B-I protein expression levels and reduced mammalian target of rapamycin (mTOR) and P62 protein expression levels in Mo- and/or Cd-exposed cells. Collectively, the results confirmed that [Ca2+]c overload resulted from PLC/IP3/IP3R pathway-mediated ER Ca2+ release, and then activated autophagy by the CaMKKß/AMPK/mTOR pathway in Mo- and/or Cd-treated duck renal tubular epithelial cells.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Poluentes Ambientais , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina , Animais , Autofagia/fisiologia , Proteína Beclina-1/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Patos/metabolismo , Dineínas/metabolismo , Células Epiteliais/metabolismo , Ésteres , Etano , Inositol 1,4,5-Trifosfato , Receptores de Inositol 1,4,5-Trifosfato , Mamíferos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Molibdênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tapsigargina , Fosfolipases Tipo C/metabolismo
2.
Environ Sci Pollut Res Int ; 29(25): 38303-38314, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35076842

RESUMO

Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but neurotoxicity caused by Mo and Cd co-exposure in ducks is yet unknown. To assess joint impacts of Mo and Cd on autophagy via calcium homeostasis and unfolded protein response (UPR) in duck brain, 40 healthy 7-day-old ducks (Anas platyrhyncha) were assigned to 4 groups at random and fed diets supplemented with different doses of Mo or/and Cd for 16 weeks, respectively. Brain tissues were excised for experiment. Results exhibited that Mo or/and Cd disturbed calcium homeostasis by decreased ATPase activities and increased calcium (Ca) content, and upregulated calcium homeostasis-related factors Ca2+/CAM-dependent kinase IIɑ (CaMKIIɑ), calcineurin (CaN), inositol-1,4,5-trisphosphate receptor (IP3R), and calreticulin (CRT) expression levels. Meanwhile, the upregulation of UPR-related factor expression levels indicated that Mo or/and Cd activated UPR. Moreover, Mo or/and Cd triggered autophagy through promoting the number of autophagosomes and LC3II immunofluorescence intensity and altering autophagy key factor expression levels. Correlation analysis showed that there were obvious connections among Ca2+ homeostasis, endoplasmic reticulum (ER) stress, and autophagy induced by Mo or/and Cd. Thence, it can be speculated that autophagy initiated by Mo or/and Cd may be associated with interfering Ca2+ homeostasis and triggering UPR.


Assuntos
Cádmio , Patos , Animais , Apoptose , Autofagia , Encéfalo/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Cálcio/metabolismo , Patos/metabolismo , Estresse do Retículo Endoplasmático , Homeostase , Molibdênio/metabolismo , Resposta a Proteínas não Dobradas
3.
Ecotoxicol Environ Saf ; 230: 113099, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34963067

RESUMO

Excess molybdenum (Mo) and cadmium (Cd) are widespread environmental and industrial metal pollutants. To evaluate the combined effects of Mo and Cd on calcium homeostasis and autophagy in duck kidneys. 160 healthy 7-day-old ducks (Anas platyrhyncha) were randomized into 4 groups and given to a basic diet, adding various doses of Mo or/and Cd for 16 weeks. On the 4th, 8th, 12th and 16th weeks, kidney tissues were collected. The study exhibited that Mo or/and Cd caused histological abnormality, reduced the activities of Ca2+ ATPase, Mg2+ ATPase, Na+-K+ ATPase and Ca2+-Mg2+ ATPase, K and Mg contents, and increased Na and Ca contents, upregulated CaMKKß, CaMKIIɑ, CaN, IP3R, GRP78, GRP94, CRT mRNA levels and CaMKIIɑ, CaN, IP3R protein levels. Moreover, exposure to Mo or/and Cd notably promoted the amount of autophagosomes and LC3II immunofluorescence, upregulated AMPKα1, ATG5, Beclin-1, LC3A, LC3B mRNA levels and Beclin-1, LC3II/LC3I protein levels, downregulated mTOR, Dynein, P62 mRNA levels and P62 protein level. The changes of above indicators in combined group were more obvious. Overall, the results suggest that Mo and Cd co-exposure may can synergistically induce nephrotoxicity via causing calcium homeostasis disorder and autophagy in ducks.

4.
Environ Pollut ; 272: 116403, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433347

RESUMO

Cadmium (Cd) and excess molybdenum (Mo) are harmful to animals, but the combined nephrotoxic mechanism of Cd and Mo in duck remains poorly elucidated. To assess joint effects of Cd and Mo on pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells, cells were cultured with 3CdSO4·8H2O (4.0 µM), (NH4)6Mo7O24·4H2O (500.0 µM), MCC950 (10.0 µM), BHA (100.0 µM) and combination of Cd and Mo or Cd, Mo and MCC950 or Cd, Mo and BHA for 12 h, and the joint cytotoxicity was explored. The results manifested that toxicity of non-equitoxic binary mixtures of Mo and Cd exhibited synergic interaction. Mo or/and Cd elevated ROS level, PTEN mRNA and protein levels, and decreased PI3K, AKT and p-AKT expression levels. Simultaneously, Mo or/and Cd upregulated ASC, NLRP3, NEK7, Caspase-1, GSDMA, GSDME, IL-18 and IL-1ß mRNA levels and Caspase-1 p20, NLRP3, ASC, GSDMD protein levels, increased the percentage of pyroptotic cells, LDH, NO, IL-18 and IL-1ß releases as well as relative conductivity. Moreover, NLRP3 inhibitor MCC950 and ROS scavenger BHA could ameliorate the above changed factors induced by Mo and Cd co-exposure. Collectively, our results reveal that combination of Mo and Cd synergistically cause oxidative stress and trigger pyroptosis via ROS/PTEN/PI3K/AKT axis in duck tubular epithelial cells.


Assuntos
Cádmio , Molibdênio , Animais , Cádmio/toxicidade , Patos , Células Epiteliais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Piroptose , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...