Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Clin Cases ; 11(27): 6327-6343, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37900230

RESUMO

BACKGROUND: Wuzhuyu decoction, a traditional Chinese medicinal formula, is effective in treating hepatocellular carcinoma (HCC). AIM: To explore the potential mechanism of action of Wuzhuyu decoction against HCC. METHODS: The active components of each Chinese herbal medicinal ingredient in Wuzhuyu decoction and their targets were obtained from the Traditional Chinese Medicine Database and Analysis Platform. HCC was used as a search query in GeneCards, Online Mendelian Inheritance in Man, Malacards, DisGeNET, Therapeutic Target Database, and Comparative Toxicogenomics Database. The overlapping targets of the Wuzhuyu decoction and HCC were defined, and then protein-protein interaction, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed. CytoHubba was used to select hub genes, and their binding activities and key active components were verified using molecular docking. RESULTS: A total of 764 compounds, 77 active compounds, and 204 potential target genes were identified in Wuzhuyu decoction. For HCC, 9468 potential therapeutic target genes were identified by combining the results from the six databases and removing duplicates. A total of 179 overlapping targets of Wuzhuyu decoction and HCC were defined, including 10 hub genes (tumor necrosis factor, interleukin-6, AKT1, TP53, caspase-3, mitogen-activated protein kinase 1, epidermal growth factor receptor, MYC, mitogen-activated protein kinase 8, and JUN). There were six main active components (quercetin, kaempferol, ginsenoside Rh2, rutaecarpine, ß-carotene, and ß-sitosterol) that may act on hub genes to treat HCC in Wuzhuyu decoction. Kyoto Encyclopedia of Genes and Genomes enrichment analysis mainly involved the mitogen-activated protein kinase, p53, phosphatidylinositol-4,5-bisphosphate 3-kinase-Akt, Janus kinase-signal transducer of activators of transcription, and Hippo signaling pathways. Further verification based on molecular docking results showed that the small molecule compounds (quercetin, kaempferol, ginsenoside Rh2, rutaecarpine, ß-carotene, and ß-sitosterol) contained in Wuzhuyu decoction generally have excellent binding affinity to the macromolecular target proteins encoded by the top 10 genes. CONCLUSION: This study revealed that Wuzhuyu decoction may be a latent multicomponent, multitarget, and multipathway treatment for HCC. It provided novel insights for verifying the mechanism of Wuzhuyu decoction in the treatment of HCC.

2.
World J Clin Cases ; 10(35): 12875-12879, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36569013

RESUMO

Cardiovascular complications of patients with type 2 diabetes mellitus (T2DM) threaten the health and life of numerous individuals. Recently, growth factor receptor-binding protein 10 (GRB10) was found to play a pivotal role in vascular complications of T2DM, which participates in the regulation of lipid metabolism of T2DM patients. The genetic variation of GRB10 rs1800504 is closely related to the risk of coronary heart disease in patients with T2DM. The development of GRB10 as a key mediator in the association of lipid metabolism with cardiovascular complications in T2DM is detailed in and may provide new potential concerns for the study of cardiovascular complications in T2DM patients.

3.
Front Cell Dev Biol ; 9: 765578, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917613

RESUMO

Colorectal cancer (CRC) manifests as gastrointestinal tumors with high intratumoral heterogeneity. Recent studies have demonstrated that CRC may consist of tumor cells with different consensus molecular subtypes (CMS). The advancements in single-cell RNA sequencing have facilitated the development of gene regulatory networks to decode key regulators for specific cell types. Herein, we comprehensively analyzed the CMS of CRC patients by using single-cell RNA-sequencing data. CMS for all malignant cells were assigned using CMScaller. Gene set variation analysis showed pathway activity differences consistent with those reported in previous studies. Cell-cell communication analysis confirmed that CMS1 was more closely related to immune cells, and that monocytes and macrophages play dominant roles in the CRC tumor microenvironment. On the basis of the constructed gene regulation networks (GRNs) for each subtype, we identified that the critical transcription factor ERG is universally activated and upregulated in all CMS in comparison with normal cells, and that it performed diverse roles by regulating the expression of different downstream genes. In summary, molecular subtyping of single-cell RNA-sequencing data for colorectal cancer could elucidate the heterogeneity in gene regulatory networks and identify critical regulators of CRC.

4.
Ann Transl Med ; 9(15): 1253, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34532390

RESUMO

BACKGROUND: Tribble pseudokinase 3 (TRIB3) plays a key role in regulating the malignancy of many tumors. This study examined its function in cancer cells and explored the potential mechanisms of action. METHODS: The expression of TRIB3 was examined in hepatocellular carcinomas (HCCs) using The Cancer Genome Atlas (TCGA) database. A TRIB3 lentivirus with a flag label was constructed and transfected into Huh7 and Hep3B human hepatoma cell lines to generate cells that stably overexpress TRIB3. A small interfering RNA (siRNA) was designed to knockdown TRIB3 mRNA in HepG2 and Huh7. Cell viability and cell colony formation assays were conducted. Flow cytometry was performed to assess the cell cycle in cells overexpressing TRIB3. Western blotting were performed to examine the expression of (Mitogen-activated protein kinase, MAPKK) (MEK), phosphorylated-MEK (p-MEK), extracellular signal-regulated kinase (ERK), and p-MEK in cells with TRIB3 knockdown. The correlation between TRIB3 and SMARCD3 was assessed using co-immunoprecipitation assays and immunofluorescence. RESULTS: TRIB3 was significantly overexpressed in advanced grade HCC tissues and was closely correlated with poor prognosis. TRIB3 overexpression promoted the cell growth and cell cycle but had little effect on migration capabilities in Huh7 and Hep3B cells. Conversely, knockdown of TRIB3 had slow down the cell growth in Huh7 and HepG2 cells detected by CCK8 and colony formation assay. The expression of MEK and ERK at both the protein and mRNA levels were downregulated when TRIB3 was knocked down. The protein expression of p-ERK and p-MEK were also downregulated upon TRIB3 silencing. SMARCD3 is a transcript factor that is belongs to the SWI/SNF complex and has been shown to regulate many genes. Indeed, co-immunoprecipitation assays demonstrated that TRIB3 interacts with SMARCD3 in the nucleus, suggesting that it may regulate TRIB3 in HCCs. CONCLUSIONS: This study demonstrated that TRIB3 promotes the malignancy of HCC cells and its expression may be a potential diagnostic biomarker for HCC progression.

5.
Food Chem ; 283: 111-122, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30722850

RESUMO

After carboxylic acid deamidation upon heating (CADH), wheat gluten still contains a total of ∼10% insoluble fractions, of which ∼10% is starch, which depreciate the values of wheat gluten. To elucidate gluten-starch interactions and their role in the deamidation behavior of gluten, the macrostructural characteristics of gluten citric acid suspensions of different concentrations (1% and 10%, w/v) and with different types of residual starch chains (achieved by enzyme hydrolyzed by α-amylase and/or glucoamylase assisted by sonication) were investigated. We found the degradation of long starch chains and branched short chains induced dramatic bond-cleavages in insoluble glutenins and gliadins. FTIR and SDS-PAGE analyses indicated that without these two types of chains in the precipitates, the insoluble deamidated wheat gluten exhibited minimal changes in the molecular force and the conformation. Their glycosylation, hydrophobic force and hydrogen bonds between amylopectin and small proteins, such as LMW-GS and α, ß, γ-gliadins, were detected. FTIR suggested that the associations between gliadins and amylopectin were covalent. Gluten-starch interactions were likely to cause an incomplete dissolution of wheat gluten during CADH. A simple model was proposed to clarify the aggregation state and the relationships between starch granules and wheat gluten components during CADH.


Assuntos
Ácidos Carboxílicos/química , Glutens/metabolismo , Amido/metabolismo , Triticum/metabolismo , Amilases/metabolismo , Gliadina/metabolismo , Glutens/química , Ligação de Hidrogênio , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Sonicação , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...