Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ren Fail ; 46(1): 2330621, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38561250

RESUMO

BACKGROUND: The systemic inflammatory response index (SIRI), served as a novel inflammatory biomarker, is the synthesis of neutrophils, monocytes and lymphocytes. AIMS: We hypothesized that SIRI has predictive value for contrast-associated acute kidney injury (CA-AKI) and long-term mortality in patients undergoing elective percutaneous coronary intervention (PCI). METHODS: We retrospectively observed 5685 patients undergoing elective PCI from January 2012 to December 2018. Venous blood samples were collected to obtain the experimental data on the day of admission or the morning of the next day. SIRI = neutrophil count × monocyte count/lymphocyte count. CA-AKI was defined as an increase of 50% or 0.3 mg/dl in SCr from baseline within 48 h after contrast exposure. RESULTS: The incidence of CA-AKI was 6.1% (n = 352). The best cutoff value of SIRI for predicting CA-AKI was 1.39, with a sensitivity of 52.3% and a specificity of 67.3%. [AUC: 0.620, 95% confidence interval (CI): 0.590-0.651, p < 0.001]. After adjusting for potential confounders, multivariate analysis showed that the high SIRI group (SIRI > 1.39) was a strong independent predictor of CA-AKI in patients undergoing elective PCI compared with the low SIRI group (SIRI ≤ 1.39) (odds ratio = 1.642, 95% CI: 1.274-2.116, p < 0.001). Additionally, COX regression analysis showed that SIRI > 1.39 was significantly associated with long-term mortality at a median follow-up of 2.8 years. [Hazard ratio (HR)=1.448, 95%CI: 1.188-1.765; p < 0.001]. Besides, Kaplan-Meier survival curve also indicated that the cumulative rate of mortality was considerably higher in the high SIRI group. CONCLUSIONS: High levels of SIRI are independent predictors of CA-AKI and long-term mortality in patients undergoing elective PCI.


Assuntos
Injúria Renal Aguda , Intervenção Coronária Percutânea , Humanos , Intervenção Coronária Percutânea/efeitos adversos , Estudos Retrospectivos , Meios de Contraste/efeitos adversos , Fatores de Risco , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia , Síndrome de Resposta Inflamatória Sistêmica
2.
Nat Commun ; 13(1): 4390, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906240

RESUMO

Lipid remodeling is crucial for malignant cell transformation and tumorigenesis, but the precise molecular processes involved and direct evidences for these in vivo remain elusive. Here, we report that oxysterol-binding protein (OSBP)-related protein 4 L (ORP4L) is expressed in adult T-cell leukemia (ATL) cells but not normal T-cells. In ORP4L knock-in T-cells, ORP4L dimerizes with OSBP to control the shuttling of OSBP between the Golgi apparatus and the plasma membrane (PM) as an exchanger of phosphatidylinositol 4-phosphate [PI(4)P]/cholesterol. The PI(4)P arriving at the PM via this transport machinery replenishes phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and phosphatidylinositol (3,4,5) trisphosphate [PI(3,4,5)P3] biosynthesis, thus contributing to PI3K/AKT hyperactivation and T-cell deterioration in vitro and in vivo. Disruption of ORP4L and OSBP dimerization disables PI(4)P transport and T-cell leukemogenesis. In summary, we identify a non-vesicular lipid transport machinery between Golgi and PM maintaining the oncogenic signaling competence initiating T-cell deterioration and leukemogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Receptores de Esteroides , Carcinogênese , Humanos , Fosfatidilinositol 4,5-Difosfato , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis , Receptores de Esteroides/metabolismo , Linfócitos T/metabolismo
3.
Sci Transl Med ; 14(629): eabh2548, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080912

RESUMO

Leukemia stem cells (LSCs) propagate leukemia and are responsible for the high frequency of relapse of treated patients. The ability to target LSCs remains elusive, indicating a need to understand the underlying mechanism of LSC formation. Here, we report that miR-31-5p is reduced or undetectable in human LSCs compared to hematopoietic stem progenitor cells (HSPCs). Inhibition of miR-31-5p in HSPCs promotes the expression of its target gene FIH, encoding FIH [factor inhibiting hypoxia-inducing factor 1α (HIF-1α)], to suppress HIF-1α signaling. Increased FIH resulted in a switch from glycolysis to oxidative phosphorylation (OXPHOS) as the predominant mode of energy metabolism and increased the abundance of the oncometabolite fumarate. Increased fumarate promoted the conversion of HSPCs to LSCs and initiated myeloid leukemia-like disease in NOD-Prkdcscid IL2rgtm1/Bcgen (B-NDG) mice. We further demonstrated that miR-31-5p inhibited long- and short-term hematopoietic stem cells with a high frequency of LSCs. In combination with the chemotherapeutic agent Ara-C (cytosine arabinoside), restoration of miR-31-5p using G7 poly (amidoamine) nanosized dendriplex encapsulating miR-31-5p eliminated LSCs and inhibited acute myeloid leukemia (AML) progression in patient-derived xenograft mouse models. These results demonstrated a mechanism of HSC malignant transformation through altered energy metabolism and provided a potential therapeutic strategy to treat patients with AML.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Animais , Fumaratos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/patologia
4.
Sensors (Basel) ; 21(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34883932

RESUMO

At present, learning-based citrus blossom recognition models based on deep learning are highly complicated and have a large number of parameters. In order to estimate citrus flower quantities in natural orchards, this study proposes a lightweight citrus flower recognition model based on improved YOLOv4. In order to compress the backbone network, we utilize MobileNetv3 as a feature extractor, combined with deep separable convolution for further acceleration. The Cutout data enhancement method is also introduced to simulate citrus in nature for data enhancement. The test results show that the improved model has an mAP of 84.84%, 22% smaller than that of YOLOv4, and approximately two times faster. Compared with the Faster R-CNN, the improved citrus flower rate statistical model proposed in this study has the advantages of less memory usage and fast detection speed under the premise of ensuring a certain accuracy. Therefore, our solution can be used as a reference for the edge detection of citrus flowering.


Assuntos
Citrus , Redes Neurais de Computação , Algoritmos , Análise por Conglomerados , Modelos Estatísticos
5.
FASEB J ; 33(12): 13852-13865, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31648575

RESUMO

Oxysterol-binding protein-related protein (ORP) 4L acts as a scaffold protein assembling CD3-ε, G-αq/11, and PLC-ß3 into a complex at the plasma membrane that mediates inositol (1,4,5)-trisphosphate (IP3)-induced endoplasmic reticulum (ER) Ca2+ release and oxidative phosphorylation in T-cell acute lymphoblastic leukemia cells. Here, we offer new evidence that ORP4L interacts with the carboxyl terminus of the IP3 receptor type 1 (ITPR1) in Jurkat T cells. ORP4L enables IP3 binding to ITPR1; a truncated construct that lacks the ITPR1-binding region retains the ability to increase IP3 production but fails to mediate IP3 and ITPR1 binding. In association with this ability of ORP4L, it enhances Ca2+ release from the ER and subsequent cytosolic and mitochondrial parallel Ca2+ spike oscillations that stimulate mitochondrial energetics and thus maintains cell survival. These data support a novel model in which ORP4L is a cofactor of ITPR1, which increases ITPR1 sensitivity to IP3 and enables ER Ca2+ release.-Cao, X., Chen, J., Li, D., Xie, P., Xu, M., Lin, W., Li, S., Pan, G., Tang, Y., Xu, J., Olkkonen, V. M., Yan, D., Zhong, W. ORP4L couples IP3 to ITPR1 in control of endoplasmic reticulum calcium release.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Esteroides/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/fisiologia , Citosol/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Células Jurkat , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Fosfolipase C beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...