Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 723
Filtrar
1.
J Clin Transl Hepatol ; 12(7): 659-666, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38993508

RESUMO

The incidence of autoimmune liver diseases (ALDs) and research on their pathogenesis are increasing annually. However, except for autoimmune hepatitis, which responds well to immunosuppression, primary biliary cholangitis and primary sclerosing cholangitis are insensitive to immunosuppressive therapy. Besides the known effects of the environment, genetics, and immunity on ALDs, the heterogeneity of target cells provides new insights into their pathogenesis. This review started by exploring the heterogeneity in the development, structures, and functions of hepatocytes and epithelial cells of the small and large bile ducts. For example, cytokeratin (CK) 8 and CK18 are primarily expressed in hepatocytes, while CK7 and CK19 are primarily expressed in intrahepatic cholangiocytes. Additionally, emerging technologies of single-cell RNA sequencing and spatial transcriptomic are being applied to study ALDs. This review offered a new perspective on understanding the pathogenic mechanisms and potential treatment strategies for ALDs.

2.
J Leukoc Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953166

RESUMO

Ethnopharmacological treatments have shown beneficial effects in the clinical practice of autoimmune disorders. However, the underlying mechanism of immunomodulatory effects remains challenging, given the complicate composition of herbal medicines. Here, we developed an immunological approach to interrogate the T helper cell response. Through data mining we hypothesized that Chinese medicine formula, Yu-Ping-Feng (YPF) might be a promising candidate for treating primary Sjögren's syndrome (pSS), a common autoimmune disease manifested by exocrine gland dysfunction. We took advantage of a mouse model of experimental Sjögren's syndrome (ESS) that we previously established for YPF formula treatment. YPF therapy ameliorated the ESS pathology in mice with active disease, showing improved salivary function and decreased serum levels of autoantibodies. Phenotypic analysis suggested that both effector T and B cells were significantly suppressed. Using co-culture assay and adoptive transfer models, we demonstrated that YPF formula directly restrained effector/memory T cell expansion and differentiation into Th17 and T follicular helper (Tfh) cells, the key subsets in ESS pathogenesis. Importantly, we recruited 20 pSS patients and conducted a pilot study of 8-week therapy of YPF formula. YPF treatment effectively improved fatigue symptoms, exocrine gland functions and reduced serum IgG/IgA levels, while effector T and B cell subsets were significantly decreased. There was a trend of reduction on disease activity, but not statistically significant. Together, our findings suggested a novel approach to assess the immunomodulatory effects of YPF formula, which may be favorable for patients with autoimmune disorders.

3.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948789

RESUMO

Therapeutics Data Commons (tdcommons.ai) is an open science initiative with unified datasets, AI models, and benchmarks to support research across therapeutic modalities and drug discovery and development stages. The Commons 2.0 (TDC-2) is a comprehensive overhaul of Therapeutic Data Commons to catalyze research in multimodal models for drug discovery by unifying single-cell biology of diseases, biochemistry of molecules, and effects of drugs through multimodal datasets, AI-powered API endpoints, new multimodal tasks and model frameworks, and comprehensive benchmarks. TDC-2 introduces over 1,000 multimodal datasets spanning approximately 85 million cells, pre-calculated embeddings from 5 state-of-the-art single-cell models, and a biomedical knowledge graph. TDC-2 drastically expands the coverage of ML tasks across therapeutic pipelines and 10+ new modalities, spanning but not limited to single-cell gene expression data, clinical trial data, peptide sequence data, peptidomimetics protein-peptide interaction data regarding newly discovered ligands derived from AS-MS spectroscopy, novel 3D structural data for proteins, and cell-type-specific protein-protein interaction networks at single-cell resolution. TDC-2 introduces multimodal data access under an API-first design using the model-view-controller paradigm. TDC-2 introduces 7 novel ML tasks with fine-grained biological contexts: contextualized drug-target identification, single-cell chemical/genetic perturbation response prediction, protein-peptide binding affinity prediction task, and clinical trial outcome prediction task, which introduce antigen-processing-pathway-specific, cell-type-specific, peptide-specific, and patient-specific biological contexts. TDC-2 also releases benchmarks evaluating 15+ state-of-the-art models across 5+ new learning tasks evaluating models on diverse biological contexts and sampling approaches. Among these, TDC-2 provides the first benchmark for context-specific learning. TDC-2, to our knowledge, is also the first to introduce a protein-peptide binding interaction benchmark.

4.
Cancer Res ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024555

RESUMO

Gastric cancer (GC) is an aggressive malignancy with poor patient outcomes. NAT10 is an acetyltransferase that has been reported to contribute to GC progression. In-depth investigation into the underlying molecular mechanisms driven by NAT10 could help identify therapeutic targets to improve GC treatment. Here, we found that NAT10 forms condensates to regulate RNA dynamics and promote GC progression. In GC patient samples, elevated NAT10 expression correlated with an unfavorable prognosis, advanced disease stage, and metastasis. NAT10 enhanced proliferation, migration, and invasion of GC cells, supported growth of patient-derived organoids, and accelerated tumor development. A C-terminal intrinsically disordered region mediated liquid-liquid phase separation (LLPS) of NAT10 and was essential for its tumor-promoting function in GC. Moreover, NAT10 interacted with the splicing factor SRSF2, leading to its acetylation and increased stability. Acetylated SRSF2 directly bound to the pre-mRNA of the m6A reader YTHDF1, resulting in enhanced YTHDF1 exon 4 skipping and upregulation of a short YTHDF1 transcript that could stimulate GC cell proliferation and migration. Furthermore, YTHDF1 exon 4 skipping correlated with NAT10 and SRSF2 expression and was associated with a more aggressive phenotype in GC patient samples. Together, this study uncovers the role of NAT10 LLPS in modulating YTHDF1 splicing through SRSF2 acetylation to drive GC progression, providing insights into the oncogenic mechanism of NAT10.

5.
Opt Express ; 32(11): 19746-19756, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38859102

RESUMO

Metallic nanoparticle-over-mirror (NPOM) represents as a versatile plasmonic configuration for surface enhanced spectroscopy, sensing and light-emitting metasurfaces. However, experimentally identifying the high-order localized surface plasmon modes in NPOM, especially for the best plasmonic material silver, is often hindered by the small scattering cross-section of high-order plasmon modes and the poor reproducibility of the spectra across different NPOMs, resulted from the polyhedral morphology of the colloidal nanoparticles or the rough surface of deposited polycrystalline metals. In this study, we identify the high-order localized surface plasmon modes in silver NPOM by using differential reflection spectroscopy. We achieved reproducible single-particle absorption spectra by constructing uniform NPOM consisting of silver nanospheres, single-crystallized silver microplates, and a self-assembled monolayer of 1,10-decanedithiol. For comparison, silver NPOM created from typical polycrystalline films exhibits significant spectral fluctuations, even when employing template stripping methods to minimize the film roughness. Identifying high-order plasmon modes in the NPOM configuration offers a pathway to construct high-quality plasmonic substrates for applications such as colloidal metasurface, surface-enhanced Raman spectroscopy, fluorescence, or infrared absorption.

6.
J Hazard Mater ; 474: 134814, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850932

RESUMO

Identification of components in pesticide mixtures has been a major challenge in spectral analysis. In this paper, we assembled monolayer Ag nanoparticles on Thin-layer chromatography (TLC) plates to prepare TLC-Ag substrates with mixture separation and surface-enhanced Raman scattering (SERS) detection. Spectral scans were performed along the longitudinal direction of the TLC-Ag substrate to generate SERS spectra of all target analytes on the TLC plate. Convolutional neural network classification and spectral angle similarity machine learning algorithms were used to identify pesticide information from the TLC-SERS spectra. It was shown that the proposed automated spectral analysis method successfully classified five categories, including four pesticides (thiram, triadimefon, benzimidazole, thiamethoxam) as well as a blank TLC-Ag data control. The location of each pesticide on the TLC plate was determined by the intersection of the information curves of the two algorithms with 100 % accuracy. Therefore, this method is expected to help regulators understand the residues of mixed pesticides in agricultural products and reduce the potential risk of agricultural products to human health and the environment.

7.
PLoS Pathog ; 20(6): e1012271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38829910

RESUMO

Proper transcription regulation by key transcription factors, such as IRF3, is critical for anti-viral defense. Dynamics of enhancer activity play important roles in many biological processes, and epigenomic analysis is used to determine the involved enhancers and transcription factors. To determine new transcription factors in anti-DNA-virus response, we have performed H3K27ac ChIP-Seq and identified three transcription factors, NR2F6, MEF2D and MAFF, in promoting HSV-1 replication. NR2F6 promotes HSV-1 replication and gene expression in vitro and in vivo, but not dependent on cGAS/STING pathway. NR2F6 binds to the promoter of MAP3K5 and activates AP-1/c-Jun pathway, which is critical for DNA virus replication. On the other hand, NR2F6 is transcriptionally repressed by c-Jun and forms a negative feedback loop. Meanwhile, cGAS/STING innate immunity signaling represses NR2F6 through STAT3. Taken together, we have identified new transcription factors and revealed the underlying mechanisms involved in the network between DNA viruses and host cells.


Assuntos
Herpesvirus Humano 1 , Imunidade Inata , Humanos , Animais , Herpesvirus Humano 1/imunologia , Camundongos , Replicação Viral , Herpes Simples/imunologia , Herpes Simples/virologia , Herpes Simples/metabolismo , Transdução de Sinais , Células HEK293 , Proteínas Repressoras
8.
Appl Opt ; 63(14): 3910-3915, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856354

RESUMO

This research introduces a compact, auto-aligning interferometer engineered for measuring translations with a wide angular working range and picometer precision above 1H z. It presents a design ensuring automatic beam alignment during movement through secondary reflection from a corner reflector. The sensor head, a 20×10×10m m 3 all-glass quasi-monolithic structure, exhibits a displacement sensitivity below 1p m/H z 1/2 above 1H z and a wide angular working range of ±200m r a d. This versatile optical design holds promise to improve the sensitivity in applications such as laser ranging, optical seismometers, precision manufacturing, and metrology.

9.
Redox Biol ; 75: 103240, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38889621

RESUMO

T-helper 17 cells and regulatory T cells (Treg) are critical regulators in the pathogenesis of multiple sclerosis (MS) but the factors affecting Treg/Th17 balance remains largely unknown. Redox balance is crucial to maintaining immune homeostasis and reducing the severity of MS but the underlying mechanisms are unclear yet. Herein, we tested the hypothesis that peroxynitrite, a representative molecule of reactive nitrogen species (RNS), could inhibit peripheral Treg cells, disrupt Treg/Th17 balance and aggravate MS pathology by inducing nitration of interleukin-2 receptor (IL-2R) and down-regulating RAS/JNK-AP-1 signalling pathway. Experimental autoimmune encephalomyelitis (EAE) mouse model and serum samples of MS patients were used in the study. We found that the increases of 3-nitrotyrosine and IL-2R nitration in Treg cells were coincided with disease severity in the active EAE mice. Mechanistically, peroxynitrite-induced IL-2R nitration down-regulated RAS/JNK signalling pathway, subsequently impairing peripheral Treg expansion and function, increasing Teff infiltration into the central nerve system (CNS), aggravating demyelination and neurological deficits in the EAE mice. Those changes were abolished by peroxynitrite decomposition catalyst (PDC) treatment. Furthermore, transplantation of the PDC-treated-autologous Treg cells from donor EAE mice significantly decreased Th17 cells in both axillary lymph nodes and lumbar spinal cord, and ameliorated the neuropathology of the recipient EAE mice. Those results suggest that peroxynitrite could disrupt peripheral Treg/Th17 balance, and aggravate neuroinflammation and neurological deficit in active EAE/MS pathogenesis. The underlying mechanisms are related to induce the nitration of IL-2R and inhibit the RAS/JNK-AP-1 signalling pathway in Treg cells. The study highlights that targeting peroxynitrite-mediated peripheral IL-2R nitration in Treg cells could be a novel therapeutic strategy to restore Treg/Th17 balance and ameliorate MS/EAE pathogenesis. The study provides valuable insights into potential role of peripheral redox balance in maintaining CNS immune homeostasis.

10.
Nat Methods ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783067

RESUMO

Spatially resolved transcriptomics (SRT) technologies have significantly advanced biomedical research, but their data analysis remains challenging due to the discrete nature of the data and the high levels of noise, compounded by complex spatial dependencies. Here, we propose spaVAE, a dependency-aware, deep generative spatial variational autoencoder model that probabilistically characterizes count data while capturing spatial correlations. spaVAE introduces a hybrid embedding combining a Gaussian process prior with a Gaussian prior to explicitly capture spatial correlations among spots. It then optimizes the parameters of deep neural networks to approximate the distributions underlying the SRT data. With the approximated distributions, spaVAE can contribute to several analytical tasks that are essential for SRT data analysis, including dimensionality reduction, visualization, clustering, batch integration, denoising, differential expression, spatial interpolation, resolution enhancement and identification of spatially variable genes. Moreover, we have extended spaVAE to spaPeakVAE and spaMultiVAE to characterize spatial ATAC-seq (assay for transposase-accessible chromatin using sequencing) data and spatial multi-omics data, respectively.

11.
Front Genet ; 15: 1391921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784036

RESUMO

Background: Observational studies have indicated a potential correlation between glioblastoma and circulating inflammatory proteins. Further investigation is required to establish a causal relationship between these two factors. Methods: We performed a Mendelian randomization (MR) analysis using genome-wide association study (GWAS) summary of 91 circulating inflammation-related proteins (N = 14,824) to assess their causal impact on glioblastoma. The GWAS summary data for glioblastoma included 243 cases and 287,137 controls. The inverse variance weighted (IVW) method was used as the primary analytical method to assess causality. Four additional MR methods [simple mode, MR-Egger, weighted median, and weighted mode] were used to supplement the IVW results. Furthermore, several sensitivity analyses were performed to assess heterogeneity, horizontal pleiotropy, and stability. Reverse MR analysis was also performed. glioblastoma transcriptomic data from The Cancer Genome Atlas (TCGA) were analyzed to validate the findings obtained through MR, while pathway and functional enrichment analyses were conducted to predict the potential underlying mechanisms. Results: Our findings from employing the inverse variance weighted method in our forward MR analysis provide robust evidence supporting a potential association between glioblastoma and elevated levels of Cystatin D, as well as decreased levels of fibroblast growth factor 21 (FGF21) in the circulation. Moreover, our reverse MR analysis revealed that glioblastoma may contribute to increased concentrations of C-X-C motif chemokine 9 (CXCL9) and Interleukin-33 (IL-33) in the bloodstream. Transcriptomic analysis showed that FGF21 expression was inversely associated with the risk of developing glioblastoma, whereas an increased risk was linked to elevated levels of CXCL9 and IL-33. Pathway and functional enrichment analyses suggested that Cystatin D might exert its effects on glioblastoma through intracellular protein transport, whereas FGF21 might affect glioblastoma via glucose response mechanisms. Conclusion: These results indicate that FGF21 is a significant factor in glioblastoma susceptibility. Glioblastoma also affects the expression of inflammatory proteins such as C-X-C motif chemokine 9 and Interleukin-33, providing new insights into the mechanisms of glioblastoma genesis and clinical research.

12.
J Inflamm Res ; 17: 2927-2938, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764496

RESUMO

Purpose: This study aimed to explore the therapeutic effect and potential mechanism of heparin-binding protein (HBP) reduction on sepsis-related acute lung injury. Methods: We utilized a murine model of sepsis-induced by intraperitoneal injection of lipopolysaccharides (LPS) in C57BL/6J mice divided into four groups: Control, LPS, Anti-HBP, and ceftriaxone (CEF). Following sepsis induction, Anti-HBP or CEF treatments were administered, and survival rates were monitored for 48 h. We then used reverse-transcription quantitative PCR to analyze the expression levels of HBP in lung tissues, immunohistochemistry for protein localization, and Western blotting for protein quantification. Pulmonary inflammation was assessed using enzyme-linked immunosorbent assays of proinflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1ß, IL-6, and interferon-γ). The activation state of the aryl hydrocarbon receptor (AhR) signaling pathway was determined via Western blotting, evaluating both cytoplasmic and nuclear localization of AhR and the expression of cytochrome P450 1A1 protein by its target gene. Results: Anti-HBP specifically reduced HBP levels. The survival rate of mice in the Anti-HBP and CEF groups was much higher than that in the LPS group. The severity of lung injury and pulmonary inflammatory response in the Anti-HBP and CEF groups was significantly lower than that in the LPS group. AhR signaling pathway activation was observed in the Anti-HBP and CEF groups. Additionally, there was no significant difference in the above indices between the Anti-HBP and CEF groups. Conclusion: HBP downregulation in lung tissues significantly improved LPS-induced lung injury and the pulmonary inflammatory response, thereby prolonging the survival of sepsis mice, suggesting activation of the AhR signaling pathway. Moreover, the effect of lowering the HBP level was equivalent to that of the classical antibiotic CEF. Trial Registration: Not applicable.

14.
Ann Rheum Dis ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777379

RESUMO

OBJECTIVE: Tissue-resident memory cells (Trm) are a subset of T cells residing persistently and long-term within specific tissues that contribute to persistent inflammation and tissue damage. We characterised the phenotype and function of Trm and the role of CD103 in primary Sjogren's syndrome (pSS). METHODS: In both pSS and non-pSS sicca syndrome patients, we examined Trm frequency, cytokine production in salivary glands (SG) and peripheral blood (PB). We also analysed Trm-related gene expression in SG biopsies through bulk and single-cell RNA sequencing (scRNAseq). Additionally, we investigated Trm properties in an immunisation-induced animal model of pSS (experimental SS, ESS) mouse model and assessed the effects of Trm inhibition via intraglandular anti-CD103 monoclonal antibody administration. RESULTS: Transcriptomic pSS SG showed an upregulation of genes associated with tissue recruitment and long-term survival of Trm cells, confirmed by a higher frequency of CD8+CD103+CD69+ cells in pSS SG, compared with non-specific sialadenitis (nSS). In SG, CD8+ CD103+ Trm contributed to the secretion of granzyme-B and interferon-γ, CD8+ Trm cells were localised within inflammatory infiltrates, where PD1+CD8+ T cells were also increased compared with nSS and MALT lymphoma. scRNAseq of PB and pSS SG T cells confirmed expression of CD69, ITGAE, GZMB, GZMK and HLA-DRB1 among CD3+CD8+ SG T cells. In the SG of ESS, CD8+CD69+CD103+ Trm producing Granzyme B progressively expanded. However, intraglandular blockade of CD103 in ESS reduced Trm, reduced glandular damage and improved salivary flow. CONCLUSIONS: CD103+CD8+Trm cells are expanded in the SG of pSS and ESS, participate in tissue inflammation and can be therapeutically targeted.

15.
J Colloid Interface Sci ; 669: 775-786, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38744155

RESUMO

Supramolecular flame retardants have attracted increasing attention recently due to their simple and eco-friendly preparation process. In this study, a novel flame retardant HEPFR was prepared using supramolecular self-assembly technology between piperazine and 1-hydroxy ethylidene-1,1-diphosphonic acid (HEDP). It was introduced into polyvinyl alcohol (PVA) matrix to form PVA/HEPFR composite film. Subsequently, the transparency, mechanical properties, thermal stability, and flame retardancy of PVA/HEPFR films were studied. Due to the hydrogen bonded cross-linked network structure between PVA and HEPFR, the mechanical properties of PVA/HEPFR films have been improved, while maintaining good transparency. With 10 wt% addition of HEPFR, PVA films can reach the VTM-0 level in UL-94 testing. And the limiting oxygen index can be increased from 18.5% of pure PVA to 26.5%. The peak heat release rate was reduced by 61.5%. The flame retardancy and thermal stability of PVA/HEPFR films have been greatly improved. This study provides a "one stone, three birds" strategy for preparing flame-retardant, transparent, and robust PVA film.

16.
Diabetes Obes Metab ; 26(7): 2774-2786, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38618970

RESUMO

AIM: This study assessed the efficacy and safety of co-administering retagliptin and henagliflozin versus individual agents at corresponding doses in patients with type 2 diabetes mellitus who were inadequately controlled with metformin. METHODS: This multicentre, phase 3 trial consisted of a 24-week, randomized, double-blind, active-controlled period. Patients with glycated haemoglobin (HbA1c) levels between 7.5% and 10.5% were randomized to receive once-daily retagliptin 100 mg (R100; n = 155), henagliflozin 5 mg (H5; n = 156), henagliflozin 10 mg (H10; n = 156), co-administered R100/H5 (n = 155), or R100/H10 (n = 156). The primary endpoint was the change in HbA1c from baseline to week 24. RESULTS: Based on the primary estimand, the least squares mean reductions in HbA1c at week 24 were significantly greater in the R100/H5 (-1.51%) and R100/H10 (-1.54%) groups compared with those receiving the corresponding doses of individual agents (-0.98% for R100, -0.86% for H5 and -0.95% for H10, respectively; p < .0001 for all pairwise comparisons). Achievement of HbA1c <7.0% at week 24 was observed in 27.1% of patients in the R100 group, 21.2% in the H5 group, 24.4% in the H10 group, 57.4% in the R100/H5 group and 56.4% in the R100/H10 group. Reductions in fasting plasma glucose and 2-h postprandial glucose were also more pronounced in the co-administration groups compared with the individual agents at corresponding doses. Decreases in body weight and systolic blood pressure were greater in the groups containing henagliflozin than in the R100 group. The incidence rates of adverse events were similar across all treatment groups, with no reported episodes of severe hypoglycaemia. CONCLUSIONS: For patients with type 2 diabetes mellitus inadequately controlled by metformin monotherapy, the co-administration of retagliptin and henagliflozin yielded more effective glycaemic control through 24 weeks compared with the individual agents at their corresponding doses.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2 , Quimioterapia Combinada , Hemoglobinas Glicadas , Hipoglicemiantes , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Método Duplo-Cego , Metformina/administração & dosagem , Metformina/uso terapêutico , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/efeitos dos fármacos , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/uso terapêutico , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Idoso , Adulto , Resultado do Tratamento
17.
Artigo em Inglês | MEDLINE | ID: mdl-38607220

RESUMO

Objective: This study aims to analyze factors contributing to recurrent respiratory tract infections (RRTIs) in pediatric patients and evaluate the efficacy of pidotimod (PI) treatment. Methods: This study utilized a retrospective cohort design, enrolling a total of 85 children diagnosed with RRTIs between September 2020 and September 2022, alongside 54 healthy children. Logistic regression analysis was employed to identify factors contributing to RRTI occurrence. Among the participants, 40 children underwent conventional treatment (control group), while 45 received PI treatment (research group). Comparative analyses were conducted to assess clinical efficacy and adverse effects between the two treatment groups. Results: The history of family members' smoking and parental allergy emerged as independent risk factors for RRTIs (P < .05, OR>1), whereas parental education level, outdoor activity, and micronutrient intake were identified as independent protective factors for RRTIs (P < .05, OR<1). Symptoms such as cough, fever, rhonchi, moist rales, and tonsillar enlargement resolved significantly faster in the research group compared to the control group (P < .05). Additionally, the research group exhibited reduced infection duration and fewer recurrent infections (P < .05). Following treatment, the overall treatment efficacy was superior in the research group compared to the control group (P < .05), with no significant difference in the incidence of adverse effects (P > .05). Post-treatment, levels of CD3+, CD4+, and CD4+/CD8+ were elevated in the research group compared to the control group, while CD8+ levels were lower (P < .05). Conclusions: Daily outdoor activity among children, family members' history of smoking, parental allergy history, education level, and micronutrient intake emerged as independent factors influencing pediatric RRTIs. Furthermore, PI was identified as a significant treatment option for RRTIs.

18.
J Immunother Cancer ; 12(4)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688579

RESUMO

BACKGROUND: Glioblastoma (GBM) is a fatal primary brain malignancy in adults. Previous studies have shown that cytomegalovirus (CMV) is a risk factor for tumorigenesis and aggressiveness for glioblastoma. However, little is known about how CMV infection affects immune cells in the tumor microenvironment of GBM. Furthermore, there has been almost no engineered T-cell receptor (TCR)-T targeting CMV for GBM research to date. METHODS: We evaluated the CMV infection status of patients with GBM's tumor tissue by immune electron microscopy, immunofluorescence, and droplet digital PCR. We performed single-cell RNA sequencing for CMV-infected GBM to investigate the effects of CMV on the GBM immune microenvironment. CellChat was applied to analyze the interaction between cells in the GBM tumor microenvironment. Additionally, we conducted single-cell TCR/B cell receptor (BCR) sequencing and Grouping of Lymphocyte Interactions with Paratope Hotspots 2 algorithms to acquire specific CMV-TCR sequences. Genetic engineering was used to introduce CMV-TCR into primary T cells derived from patients with CMV-infected GBM. Flow cytometry was used to measure the proportion and cytotoxicity status of T cells in vitro. RESULTS: We identified two novel immune cell subpopulations in CMV-infected GBM, which were bipositive CD68+SOX2+ tumor-associated macrophages and FXYD6+ T cells. We highlighted that the interaction between bipositive TAMs or cancer cells and T cells was predominantly focused on FXYD6+ T cells rather than regulatory T cells (Tregs), whereas, FXYD6+ T cells were further identified as a group of novel immunosuppressive T cells. CMV-TCR-T cells showed significant therapeutic effects on the human-derived orthotopic GBM mice model. CONCLUSIONS: These findings provided an insight into the underlying mechanism of CMV infection promoting the GBM immunosuppression, and provided a novel potential immunotherapy strategy for patients with GBM.


Assuntos
Citomegalovirus , Glioblastoma , Humanos , Glioblastoma/imunologia , Glioblastoma/virologia , Glioblastoma/patologia , Camundongos , Citomegalovirus/imunologia , Animais , Infecções por Citomegalovirus/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Neoplasias Encefálicas/imunologia , Microambiente Tumoral/imunologia , RNA-Seq , Feminino , Masculino , Análise da Expressão Gênica de Célula Única
19.
Langmuir ; 40(18): 9449-9461, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659090

RESUMO

Repairable superhydrophobic surfaces have promising application potential in many fields. However, so far, it is still a challenge to develop a superhydrophobic surface with repairability for multiple types of damage through a simple method. In this paper, a repairable superhydrophobic coating was obtained on various substrates by blade-coating mixtures of polydimethylsiloxane (PDMS), polyvinylidene fluoride (PVDF), and multiwalled carbon nanotubes (MWCNTs) modified with dopamine (PDA) and octadecylamine (ODA). The obtained coating has a good liquid-repellent property with a water contact angle above 150° and a water sliding angle of ∼6° and possesses an excellent absorbance (∼97%) in the wavelength range of 250-2500 nm. Due to its high absorbance, the coating displays an outstanding photothermal effect with a temperature rise of ∼65 °C under irradiation by 1.0 kW/m2 of simulated sunlight. Furthermore, after being degraded by multiple stimuli, including plasma treatment, acid/alkali/oil immersion, sand impact, and the icing-thawing cycle, the coating can recover superhydrophobicity via sunlight irradiation, demonstrating the good photothermal-induced repairability of the coating. It can be expected that the good water-repellent property, photothermal effect, and repairability give this coating a promising prospect in practical applications.

20.
Adv Mater ; 36(24): e2313389, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485221

RESUMO

Engineered microorganisms have attracted significant interest as a unique therapeutic platform in tumor treatment. Compared with conventional cancer treatment strategies, engineering microorganism-based systems provide various distinct advantages, such as the intrinsic capability in targeting tumors, their inherent immunogenicity, in situ production of antitumor agents, and multiple synergistic functions to fight against tumors. Herein, the design, preparation, and application of the engineered microorganisms for advanced tumor therapy are thoroughly reviewed. This review presents a comprehensive survey of innovative tumor therapeutic strategies based on a series of representative engineered microorganisms, including bacteria, viruses, microalgae, and fungi. Specifically, it offers extensive analyses of the design principles, engineering strategies, and tumor therapeutic mechanisms, as well as the advantages and limitations of different engineered microorganism-based systems. Finally, the current challenges and future research prospects in this field, which can inspire new ideas for the design of creative tumor therapy paradigms utilizing engineered microorganisms and facilitate their clinical applications, are discussed.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Animais , Antineoplásicos/uso terapêutico , Fungos , Bactérias , Microalgas , Microrganismos Geneticamente Modificados , Engenharia Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...