Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931018

RESUMO

Environmental changes induced by urbanization may significantly alter plant survival strategies, thereby introducing uncertainties in their ability to withstand extreme heat. This study, centered on Jinhua City, distinguished urban, suburban, and rural areas to represent the various intensities of urbanization. It examined the leaf function properties of evergreen and deciduous trees common in these regions, focusing on leaf and branch characteristics. Employing an analysis of variance (ANOVA), principal component analysis (PCA), and path analysis (PA) of the plant functional traits and the climatic factors of each region, this study assessed the impact of urbanization on plant survival strategies. By tracking changes in plant functional traits from June to August, it explored the capacity of plants to acclimate to urban-warming-related heat stress across different urbanization gradients. The findings revealed that leaf thickness (LT) and stomatal size (SS) initially decreased and then increased, whereas specific leaf area (SLA) and leaf tissue density (LTD) first rose and then declined, from rural to urban regions. From June to August, branch wood density (WD), chlorophyll (Chl) content, LTD, and leaf dry matter content (LDMC) increased, whereas SLA and leaf water content (LWC) diminished, in all regions. PCA suggested that there was no significant change in the resource allocation strategy of plants (p > 0.05), with drought tolerance significantly reduced in the suburbs on the gradient of urbanization (p < 0.05). During the summer, with high temperature, plants were predominantly biased towards slow-return, conservative strategies, particularly among evergreen species. Compared to precipitation, PA revealed a significant urban warming effect. During summer, temperature was the main factor influencing resource investment strategy and drought resistance, with a notably stronger impact on the former. The high temperature in summer promoted a conservative survival strategy in plants, and the urbanization effect increased their tolerance to high temperatures.

2.
Sci Data ; 10(1): 353, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270574

RESUMO

Field-measured spectra are critical for remote sensing physical modelling, retrieval of structural, biophysical, and biochemical parameters, and other practical applications. We present a library of field spectra, which includes (1) portable field spectroradiometer measurements of vegetation, soil, and snow in the full-wave band, (2) multi-angle spectra measurements of desert vegetation, chernozems, and snow with consideration of the anisotropic reflectance of land surface, (3) multi-scale spectra measurements of leaf and canopy of different vegetation cover surfaces, and (4) continuous reflectance spectra time-series data revealing vegetation growth dynamics of maize, rice, wheat, rape, grassland, and so on. To the best of our knowledge, this library is unique in simultaneously providing full-band, multi-angle, multi-scale spectral measurements of the main surface elements of China covering a large spatial extent over a 10-year period. Furthermore, the 101 by 101 satellite pixels of Landsat ETM/OLI and MODIS surface reflectance centered around the field site were extracted, providing a vital linkage between ground measurements and satellite observations. The code language used for this work is Matlab 2016a.

3.
Sci Total Environ ; 878: 163127, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001663

RESUMO

Suspended particulate matter (SPM) in the brackish Ebinur Lake of arid northwest China profoundly affect its water quality and watershed habitat quality. However, the actual driving mechanisms of the Lake's SPM changes remain unclear. Therefore, the purpose of this study is to explore the controlling factors driving the variability of SPM in the Ebinur Lake. This study constructed month-by-month SPM maps of Ebinur Lake based on time-series remote-sensing imageries and SPM inversion model. Thirty-four factors that might influence SPM changes were extracted, and the Partial Least Squares Structural Equation Modeling (PLS-SEM), suitable for complex relationships and factor interactions, was applied to identify the relative influence of each factor quantitatively. The results showed: (1) a clear increasing trend of SPM concentration in Ebinur Lake from 2011 to 2020; (2) that SPM changes were influenced by external and internal factors, explaining 48.2 % and 46.9 % of the changes, respectively; (3) that, to the external factors, meteorological factors exerted the greatest influence on SPM (relative contribution of 38.9 %); that, to the internal factors, water salinity imposed the greatest influence on SPM (relative contribution of 43.3 %); (4) that, among the meteorological factors, the measured variable Alashankou wind speed expressed the most significant positive effect on SPM (weighting coefficient of 0.894), and sulfate generated the strongest positive effect on SPM (weighting coefficient of 0.791) among the water salinity factors. Hence, the quantitative identification of drivers of SPM changes in Ebinur Lake could provide a new perspective to investigate the driving mechanisms of lake water quality in arid areas and inform their sustainable restoration and management.

4.
Sensors (Basel) ; 21(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430163

RESUMO

Airborne eddy covariance (EC) measurement is one of the most effective methods to directly measure the surface mass and energy fluxes at the regional scale. It offers the possibility to bridge the scale gap between local- and global-scale measurements by ground-based sites and remote-sensing instrumentations, and to validate the surface fluxes estimated by satellite products or process-based models. In this study, we developed an unmanned aerial vehicle (UAV)-based EC system that can be operated to measure the turbulent fluxes in carbon dioxides, momentum, latent and sensible heat, as well as net radiation and photosynthetically active radiation. Flight tests of the developed UAV-based EC system over land were conducted in October 2020 in Inner Mongolia, China. The in-flight calibration was firstly conducted to correct the mounting error. Then, three flight comparison tests were performed, and we compared the measurement with those from a ground tower. The results, along with power spectral comparison and consideration of the differing measurement strategies indicate that the system can resolve the turbulent fluxes in the encountered measurement condition. Lastly, the challenges of the UAV-based EC method were discussed, and potential improvements with further development were explored. The results of this paper reveal the considerable potential of the UAV-based EC method for land surface process studies.

5.
Front Plant Sci ; 10: 1596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921245

RESUMO

Nitrogen depositions in the Yangtze River Delta have is thought to shift the coexistence of mixed evergreen and deciduous species. In this study, the seedlings of the dominant evergreen species Cyclobalanopsis glauca Thunb. and the deciduous species Liquidambar formosana Hance from the Yangtze River Delta were chosen to test their responses to simulated N additions using an ecophysiological approach. N was added to the tree canopy at rates of 0 (CK), 25 kg N ha-1 year-1 (N25), and 50 kg N ha-1 year-1 (N50). The leaf N content per mass (N m, by 44.03 and 49.46%) and total leaf chlorophyll content (Chl, by 72.15 and 63.63%) were enhanced for both species, and C. glauca but not L. formosana tended to allocate more N to Chl per leaf area (with a higher slope). The enhanced N availability and Chl promoted the apparent quantum yield (AQY) significantly by 15.38 and 43.90% for L. formosana and C. glauca, respectively. Hydraulically, the increase in sapwood density (ρ) for L. formosana was almost double that of C. glauca. Synchronous improved sapwood specific hydraulic conductivity (K S, by 37.5%) for C. glauca induced a significant reduction in stomatal conductance (g s) (p < 0.05) in the N50 treatments, which is in contrast to the weak varied g s accompanied by a 59.49% increase in K S for L. formosana. As a result, the elevated maximum photosynthesis (A max) of 12.19% for L. formosana in combination with the increase in the total leaf area (indicated by a 37.82% increase in the leaf area ratio-leaf area divided by total aboveground biomass) ultimately yielded a 34.34% enhancement of total biomass. In contrast, the A max and total biomass were weakly promoted for C. glauca. The reason for these distinct responses may be attributed to the lower water potential at 50% of conductivity lost (P 50) for C. glauca, which enables higher hydraulic safety at the cost of a weak increase in Amax due to the stomatal limitation in response to elevated N availability. Altogether, our results indicate that the deciduous L. formosana would be more susceptible to elevated N availability even if both species received similar N allocation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...