Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 275(Pt 1): 133557, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38955293

RESUMO

Autologous or allogeneic bone tissue grafts remain the mainstay of treatment for clinical bone defects. However, the risk of infection and donor scarcity in bone grafting pose challenges to the process. Therefore, the development of excellent biomaterial grafts is of great clinical importance for the repair of bone defects. In this study, we used gas-assisted microfluidics to construct double-cross-linked hydrogel microspheres with good biological function based on the ionic cross-linking of Cu2+ with alginate and photo-cross-linking of gelatin methacryloylamide (GelMA) by loading vascular endothelial growth factor (VEGF) and His-tagged bone morphogenetic protein-2 (BMP2) (AGMP@VEGF&BMP2). The Cu2+ component in the microspheres showed good antibacterial and drug-release behavior, whereas VEGF and BMP2 effectively promoted angiogenesis and bone tissue repair. In in vitro and in vivo experiments, the dual cross-linked hydrogel microspheres showed good biological function and biocompatibility. These results demonstrate that AGMP@VEGF&BMP2 microspheres could be used as a bone defect graft substitute to promote effective healing of bone defects and may be applied to other tissue engineering studies.

2.
Cell Death Dis ; 9(2): 227, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445083

RESUMO

Our previous studies showed that both exogenous and endogenous FGF21 inhibited cardiac apoptosis at the early stage of type 1 diabetes. Whether FGF21 induces preventive effect on type 2 diabetes-induced cardiomyopathy was investigated in the present study. High-fat-diet/streptozotocin-induced type 2 diabetes was established in both wild-type (WT) and FGF21-knockout (FGF21-KO) mice followed by treating with FGF21 for 4 months. Diabetic cardiomyopathy (DCM) was diagnosed by significant cardiac dysfunction, remodeling, and cardiac lipid accumulation associated with increased apoptosis, inflammation, and oxidative stress, which was aggravated in FGF21-KO mice. However, the cardiac damage above was prevented by administration of FGF21. Further studies demonstrated that the metabolic regulating effect of FGF21 is not enough, contributing to FGF21-induced significant cardiac protection under diabetic conditions. Therefore, other protective mechanisms must exist. The in vivo cardiac damage was mimicked in primary neonatal or adult mouse cardiomyocytes treated with HG/Pal, which was inhibited by FGF21 treatment. Knockdown of AMPKα1/2, AKT2, or NRF2 with their siRNAs revealed that FGF21 protected cardiomyocytes from HG/Pal partially via upregulating AMPK-AKT2-NRF2-mediated antioxidative pathway. Additionally, knockdown of AMPK suppressed fatty acid ß-oxidation via inhibition of ACC-CPT-1 pathway. And, inhibition of fatty acid ß-oxidation partially blocked FGF21-induced protection in cardiomyocytes. Further, in vitro and in vivo studies indicated that FGF21-induced cardiac protection against type 2 diabetes was mainly attributed to lipotoxicity rather than glucose toxicity. These results demonstrate that FGF21 functions physiologically and pharmacologically to prevent type 2 diabetic lipotoxicity-induced cardiomyopathy through activation of both AMPK-AKT2-NRF2-mediated antioxidative pathway and AMPK-ACC-CPT-1-mediated lipid-lowering effect in the heart.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Quinases Ativadas por AMP/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Cardiomiopatias Diabéticas/induzido quimicamente , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Dieta Hiperlipídica , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Injeções Intraperitoneais , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estreptozocina
3.
J Diabetes Res ; 2016: 1540267, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27247947

RESUMO

Cardiovascular disease (CVD) is one of the most severe diseases in clinics. Fibroblast growth factor 21 (FGF21) is regarded as an important metabolic regulator playing a therapeutic role in diabetes and its complications. The heart is a key target as well as a source of FGF21 which is involved in heart development and also induces beneficial effects in CVDs. Our review is to clarify the roles of FGF21 in CVDs. Strong evidence showed that the development of CVDs including atherosclerosis, coronary heart disease, myocardial ischemia, cardiac hypertrophy, and diabetic cardiomyopathy is associated with serum FGF21 levels increase which was regarded as a compensatory response to induced cardiac protection. Furthermore, administration of FGF21 suppressed the above CVDs. Mechanistic studies revealed that FGF21 induced cardiac protection likely by preventing cardiac lipotoxicity and the associated oxidative stress, inflammation, and apoptosis. Normally, FGF21 induced therapeutic effects against CVDs via activation of the above kinases-mediated pathways by directly binding to the FGF receptors of the heart in the presence of ß-klotho. However, recently, growing evidence showed that FGF21 induced beneficial effects on peripheral organs through an indirect way mediated by adiponectin. Therefore whether adiponectin is also involved in FGF21-induced cardiac protection still needs further investigation.


Assuntos
Doenças Cardiovasculares/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Estresse Oxidativo/efeitos dos fármacos
4.
J Cell Mol Med ; 20(7): 1352-66, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26991817

RESUMO

We investigated whether low-dose radiation (LDR) can prevent late-stage diabetic cardiomyopathy and whether this protection is because of the induction of anti-apoptotic and anti-oxidant pathways. Streptozotocin-induced diabetic C57BL/6J mice were treated with/without whole-body LDR (12.5, 25, or 50 mGy) every 2 days. Twelve weeks after onset of diabetes, cardiomyopathy was diagnosed characterized by significant cardiac dysfunction, hypertrophy and histopathological abnormalities associated with increased oxidative stress and apoptosis, which was prevented by LDR (25 or 50 mGy only). Low-dose radiation-induced cardiac protection also associated with P53 inactivation, enhanced Nrf2 function and improved Akt activation. Next, for the mechanistic study, mouse primary cardiomyocytes were treated with high glucose (33 mmol/l) for 24 hrs and during the last 15 hrs bovine serum albumin-conjugated palmitate (62.5 µmol/l) was added into the medium to mimic diabetes, and cells were treated with LDR (25 mGy) every 6 hrs during the whole process of HG/Pal treatment. Data show that blocking Akt/MDM2/P53 or Akt/Nrf2 pathways with small interfering RNA of akt, mdm2 and nrf2 not only prevented LDR-induced anti-apoptotic and anti-oxidant effects but also prevented LDR-induced suppression on cardiomyocyte hypertrophy and fibrosis against HG/Pal. Low-dose radiation prevented diabetic cardiomyopathy by improving cardiac function and hypertrophic remodelling attributed to Akt/MDM2/P53-mediated anti-apoptotic and Akt/Nrf2-mediated anti-oxidant pathways simultaneously.


Assuntos
Antioxidantes/uso terapêutico , Apoptose/efeitos da radiação , Diabetes Mellitus Tipo 1/complicações , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/radioterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Antioxidantes/farmacologia , Biomarcadores Tumorais/sangue , Cardiomegalia/sangue , Cardiomegalia/complicações , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Diabetes Mellitus Tipo 1/sangue , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Relação Dose-Resposta à Radiação , Fibrose , Glucose/toxicidade , Glicogênio Sintase Quinase 3 beta/metabolismo , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperglicemia/radioterapia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Palmitatos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Raios X
5.
Mol Endocrinol ; 29(10): 1400-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26308386

RESUMO

Fibroblast growth factor (FGF)19 and FGF21 are hormones that regulate metabolic processes particularly during feeding or starvation, thus ultimately influencing energy production. FGF19 is secreted by the intestines during feeding and negatively regulates bile acid synthesis and secretion, whereas FGF21 is produced in the liver during fasting and plays a crucial role in regulating glucose and lipid metabolism, as well as maintaining energy homeostasis. FGF19 and FGF21 are regarded as late-acting hormones because their functions are only used after insulin and glucagon have completed their actions. Although FGF19 and FGF21 are activated under different conditions, they show extensively functional overlap in terms of improving glucose tolerance, insulin sensitivity, weight loss, and lipid, and energy metabolism, particularly in pathological conditions such as diabetes, obesity, metabolic syndrome, and cardiovascular and renal diseases. Most patients with these metabolic diseases exhibit reduced serum FGF19 levels, which might contribute to its etiology. In addition, the simultaneous increase in serum FGF21 levels is likely a compensatory response to reduced FGF19 levels, and the 2 proteins concertedly maintain metabolic homeostasis. Here, we review the physiological and pharmacological cross talk between FGF19 and FGF21 in relation to the regulation of endocrine metabolism and various chronic diseases.


Assuntos
Doença Crônica , Fatores de Crescimento de Fibroblastos/metabolismo , Metabolismo , Tecido Adiposo Branco/metabolismo , Humanos , Síndrome Metabólica/metabolismo
6.
Am J Physiol Endocrinol Metab ; 309(1): E45-54, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25968574

RESUMO

The onset of diabetic nephropathy (DN) is associated with both systemic and renal changes. Fibroblast growth factor (FGF)-21 prevents diabetic complications mainly by improving systemic metabolism. In addition, low-dose radiation (LDR) protects mice from DN directly by preventing renal oxidative stress and inflammation. In the present study, we tried to define whether the combination of FGF21 and LDR could further prevent DN by blocking its systemic and renal pathogeneses. To this end, type 2 diabetes was induced by feeding a high-fat diet for 12 wk followed by a single dose injection of streptozotocin. Diabetic mice were exposed to 50 mGy LDR every other day for 4 wk with and without 1.5 mg/kg FGF21 daily for 8 wk. The changes in systemic parameters, including blood glucose levels, lipid profiles, and insulin resistance, as well as renal pathology, were examined. Diabetic mice exhibited renal dysfunction and pathological abnormalities, all of which were prevented significantly by LDR and/or FGF21; the best effects were observed in the group that received the combination treatment. Our studies revealed that the additive renal protection conferred by the combined treatment against diabetes-induced renal fibrosis, inflammation, and oxidative damage was associated with the systemic improvement of hyperglycemia, hyperlipidemia, and insulin resistance. These results suggest that the combination treatment with LDR and FGF21 prevented DN more efficiently than did either treatment alone. The mechanism behind these protective effects could be attributed to the suppression of both systemic and renal pathways.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/radioterapia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/radioterapia , Nefropatias Diabéticas/prevenção & controle , Fatores de Crescimento de Fibroblastos/uso terapêutico , Irradiação Corporal Total/métodos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Rim/efeitos dos fármacos , Rim/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Radiossensibilizantes/uso terapêutico , Estreptozocina , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...