Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
CNS Neurosci Ther ; 26(2): 189-196, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31278850

RESUMO

AIMS: Recovery after peripheral nerve injury (PNI) is often difficult, and there is no optimal treatment. Schwann cells (SCs) are important for peripheral nerve regeneration, so SC-targeting treatments have gained importance. Adipose-derived stem cells (ADSCs) and their exosomes can promote peripheral nerve repair, but their interactions with SCs are unclear. METHODS: Purified SCs from sciatic nerve injury sites were harvested, and apoptosis and proliferation of SCs at post-PNI 24 hours were analyzed. The effects of coculture with ADSCs and different concentrations of ADSC-derived exosomes (ADSC-Exo) were studied through in vitro experiments by flow cytometry, CCK8 assay, immunofluorescence staining, and histological analysis. The expression of the apoptosis-related genes Bcl-2 and Bax was also analyzed by qRT-PCR. RESULTS: ADSC-Exo reduced the apoptosis of SCs after PNI by upregulating the anti-apoptotic Bcl-2 mRNA expression and downregulating the pro-apoptotic Bax mRNA expression. Further, it also improved the proliferation rate of SCs. This effect was confirmed by the morphological and histological findings in PNI model rats. CONCLUSION: Our results present a novel exosome-mediated mechanism for ADSC-SC cross talk that reduces the apoptosis and promotes the proliferation of SCs and may have therapeutic potential in the future.


Assuntos
Tecido Adiposo/citologia , Apoptose , Exossomos , Traumatismos dos Nervos Periféricos/patologia , Células de Schwann/patologia , Células-Tronco , Animais , Proliferação de Células , Técnicas de Cocultura , Masculino , Regeneração Nervosa , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Nervo Isquiático/lesões , Proteína X Associada a bcl-2/genética
2.
Neural Regen Res ; 14(12): 2183-2191, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31397358

RESUMO

Wallerian degeneration and nerve regeneration after injury are complex processes involving many genes, proteins and cytokines. After different peripheral nerve injuries the regeneration rate can differ. Whether this is caused by differential expression of genes and proteins during Wallerian degeneration remains unclear. The right tibial nerve and the common peroneal nerve of the same rat were exposed and completely cut through and then sutured in the same horizontal plane. On days 1, 7, 14, and 21 after surgery, 1-2 cm of nerve tissue distal to the suture site was dissected out from the tibial and common peroneal nerves. The differences in gene and protein expression during Wallerian degeneration of the injured nerves were then studied by RNA sequencing and proteomic techniques. In the tibial and common peroneal nerves, there were 1718, 1374, 1187, and 2195 differentially expressed genes, and 477, 447, 619, and 495 differentially expressed proteins on days 1, 7, 14, and 21 after surgery, respectively. Forty-seven pathways were activated during Wallerian degeneration. Three genes showing significant differential expression by RNA sequencing (Hoxd4, Lpcat4 and Tbx1) were assayed by real-time quantitative polymerase chain reaction. RNA sequencing and real-time quantitative polymerase chain reaction results were consistent. Our findings showed that expression of genes and proteins in injured tibial and the common peroneal nerves were significantly different during Wallerian degeneration at different time points. This suggests that the biological processes during Wallerian degeneration are different in different peripheral nerves after injury. The procedure was approved by the Animal Experimental Ethics Committee of the Second Military Medical University, China (approval No. CZ20160218) on February 18, 2016.

3.
Neural Regen Res ; 14(7): 1271-1279, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30804259

RESUMO

Polyethylene glycol can connect the distal and proximal ends of an injured nerve at the cellular level through axonal fusion to avoid Wallerian degeneration of the injured distal nerve and promote peripheral nerve regeneration. However, this method can only prevent Wallerian degeneration in 10% of axons because the cytoskeleton is not repaired in a timely fashion. Reconstruction of the cytoskeletal trunk and microtubule network has been suggested to be the key for improving the efficiency of axonal fusion. As a microtubule-severing protein, spastin has been used to enhance cytoskeletal reconstruction. Therefore, we hypothesized that spastin combined with polyethylene glycol can more effectively promote peripheral nerve regeneration. A total of 120 male Sprague-Dawley rats were randomly divided into sham, suture, polyethylene glycol, and polyethylene glycol + spastin groups. In suture group rats, only traditional nerve anastomosis of the end-to-end suture was performed after transection of the sciatic nerve. In polyethylene glycol and polyethylene glycol + spastin groups, 50 µL of polyethylene glycol or 25 µL of polyethylene glycol + 25 µL of spastin, respectively, were injected immediately under the epineurium of the distal suture. Sensory fiber regeneration distance, which was used to assess early nerve regeneration at 1 week after surgery, was shortest in the suture group, followed by polyethylene glycol group and greatest in the polyethylene glycol + spastin group. Behavioral assessment of motor function recovery in rats showed that limb function was restored in polyethylene glycol and polyethylene glycol + spastin groups at 8 weeks after surgery. At 1, 2, 4 and 8 weeks after surgery, sciatic functional index values and percentages of gastrocnemius muscle wet weight were highest in the sham group, followed by polyethylene glycol + spastin and polyethylene glycol groups, and lowest in the suture group. Masson staining was utilized to assess the morphology of muscle tissue. Morphological changes in skeletal muscle were detectable in suture, polyethylene glycol, and polyethylene glycol + spastin groups at 1, 2, 4, and 8 weeks after surgery. Among them, muscular atrophy of the suture group was most serious, followed by polyethylene glycol and polyethylene glycol + spastin groups. Ultrastructure of distal sciatic nerve tissue, as detected by transmission electron microscopy, showed a pattern of initial destruction, subsequent disintegration, and gradual repair in suture, polyethylene glycol, and polyethylene glycol + spastin groups at 1, 2, 4, and 8 weeks after surgery. As time proceeded, axonal ultrastructure gradually recovered. Indeed, the polyethylene glycol + spastin group was similar to the sham group at 8 weeks after surgery. Our findings indicate that the combination of polyethylene glycol and spastin can promote peripheral nerve regeneration. Moreover, the effect of this combination was better than that of polyethylene glycol alone, and both were superior to the traditional neurorrhaphy. This study was approved by the Animal Ethics Committee of the Second Military Medical University, China (approval No. CZ20170216) on March 16, 2017.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...