Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746377

RESUMO

Background and Objective: Prostate cancer (PCa) is a leading cause of cancer mortality in men, with neuroendocrine prostate cancer (NEPC) representing a particularly resistant subtype. The role of transcription factors (TFs) in the progression from prostatic adenocarcinoma (PRAD) to NEPC is poorly understood. This study aims to identify and analyze lineage-specific TF profiles in PRAD and NEPC and illustrate their dynamic shifts during NE transdifferentiation. Methods: A novel algorithmic approach was developed to evaluate the weighted expression of TFs within patient samples, enabling a nuanced understanding of TF landscapes in PCa progression and TF dynamic shifts during NE transdifferentiation. Results: unveiled TF profiles for PRAD and NEPC, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs. Enrichment analysis across multiple clinical cohorts confirmed the lineage specificity and clinical relevance of these lineage-TFs signatures. Functional analysis revealed that lineage-TFs are implicated in pathways critical to cell development, differentiation, and lineage determination. Novel lineage-TF candidates were identified, offering potential targets for therapeutic intervention. Furthermore, our longitudinal study on NE transdifferentiation highlighted dynamic TF expression shifts and delineated a three-phase hypothesis for the process comprised of de-differentiation, dormancy, and re-differentiation. and proposing novel insights into the mechanisms of PCa progression. Conclusion: The lineage-specific TF profiles in PRAD and NEPC reveal a dynamic shift in the TF landscape during PCa progression, highlighting three distinct phases of NE transdifferentiation.

2.
Bioinformatics ; 40(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38390963

RESUMO

MOTIVATION: A patient's disease phenotype can be driven and determined by specific groups of cells whose marker genes are either unknown or can only be detected at late-stage using conventional bulk assays such as RNA-Seq technology. Recent advances in single-cell RNA sequencing (scRNA-seq) enable gene expression profiling in cell-level resolution, and therefore have the potential to identify those cells driving the disease phenotype even while the number of these cells is small. However, most existing methods rely heavily on accurate cell type detection, and the number of available annotated samples is usually too small for training deep learning predictive models. RESULTS: Here, we propose the method ScRAT for phenotype prediction using scRNA-seq data. To train ScRAT with a limited number of samples of different phenotypes, such as coronavirus disease (COVID) and non-COVID, ScRAT first applies a mixup module to increase the number of training samples. A multi-head attention mechanism is employed to learn the most informative cells for each phenotype without relying on a given cell type annotation. Using three public COVID datasets, we show that ScRAT outperforms other phenotype prediction methods. The performance edge of ScRAT over its competitors increases as the number of training samples decreases, indicating the efficacy of our sample mixup. Critical cell types detected based on high-attention cells also support novel findings in the original papers and the recent literature. This suggests that ScRAT overcomes the challenge of missing marker genes and limited sample number with great potential revealing novel molecular mechanisms and/or therapies. AVAILABILITY AND IMPLEMENTATION: The code of our proposed method ScRAT is published at https://github.com/yuzhenmao/ScRAT.


Assuntos
Análise de Célula Única , Análise da Expressão Gênica de Célula Única , Humanos , Análise de Célula Única/métodos , RNA-Seq , Perfilação da Expressão Gênica , Redes Neurais de Computação , Fenótipo , Análise de Sequência de RNA , Análise por Conglomerados
3.
Commun Biol ; 7(1): 12, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172434

RESUMO

Type 2 innate lymphoid cells (ILC2s) perform vital functions in orchestrating humoral immune responses, facilitating tissue remodelling, and ensuring tissue homeostasis. Additionally, in a role that has garnered considerably less attention, ILC2s can also enhance Th1-related cytolytic T lymphocyte immune responses against tumours. Studies have thus far generally failed to address the mystery of how one ILC2 cell-type can participate in a multiplicity of functions. Here we utilized single cell RNA sequencing analysis to create the first comprehensive atlas of naïve and tumour-associated lung ILC2s and discover multiple unique subtypes of ILC2s equipped with developmental gene programs that become skewed during tumour expansion favouring inflammation, antigen processing, immunological memory and Th1-related anti-tumour CTL responses. The discovery of these new subtypes of ILC2s challenges current paradigms of ILC2 biology and provides an explanation for their diversity of function.


Assuntos
Imunidade Inata , Neoplasias , Humanos , Linfócitos , Pulmão/patologia , Inflamação/patologia , Neoplasias/genética , Neoplasias/patologia
4.
Gynecol Oncol ; 176: 162-172, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556934

RESUMO

OBJECTIVE: Dedifferentiated endometrial cancer (DDEC) is an uncommon and clinically highly aggressive subtype of endometrial cancer characterized by genomic inactivation of SWItch/Sucrose Non-Fermentable (SWI/SNF) complex protein. It responds poorly to conventional systemic treatment and its rapidly progressive clinical course limits the therapeutic windows to trial additional lines of therapies. This underscores a pressing need for biologically accurate preclinical tumor models to accelerate therapeutic development. METHODS: DDEC tumor from surgical samples were implanted into immunocompromised mice for patient-derived xenograft (PDX) and cell line development. The histologic, immunophenotypic, genetic and epigenetic features of the patient tumors and the established PDX models were characterized. The SMARCA4-deficienct DDEC model was evaluated for its sensitivity toward a KDM6A/B inhibitor (GSK-J4) that was previously reported to be effective therapy for other SMARCA4-deficient cancer types. RESULTS: All three DDEC models exhibited rapid growth in vitro and in vivo, with two PDX models showing spontaneous development of metastases in vivo. The PDX tumors maintained the same undifferentiated histology and immunophenotype, and exhibited identical genomic and methylation profiles as seen in the respective parental tumors, including a mismatch repair (MMR)-deficient DDEC with genomic inactivation of SMARCA4, and two MMR-deficient DDECs with genomic inactivation of both ARID1A and ARID1B. Although the SMARCA4-deficient cell line showed low micromolecular sensitivity to GSK-J4, no significant tumor growth inhibition was observed in the corresponding PDX model. CONCLUSIONS: These established patient tumor-derived models accurately depict DDEC and represent valuable preclinical tools to gain therapeutic insights into this aggressive tumor type.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Neoplasias do Endométrio , Feminino , Humanos , Animais , Camundongos , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Diferenciação Celular , Biomarcadores Tumorais/genética , DNA Helicases , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética
5.
Cancer Gene Ther ; 30(10): 1382-1389, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37452083

RESUMO

Androgen deprivation therapy (ADT) is the standard care for advanced prostate cancer (PCa) patients. Unfortunately, although tumors respond well initially, they enter dormancy and eventually progress to fatal/incurable castration-resistant prostate cancer (CRPC). B7-H3 is a promising new target for PCa immunotherapy. CD276 (B7-H3) gene has a presumptive androgen receptor (AR) binding site, suggesting potential AR regulation. However, the relationship between B7-H3 and AR is controversial. Meanwhile, the expression pattern of B7-H3 following ADT and during CRPC progression is largely unknown, but critically important for identifying patients and determining the optimal timing of B7-H3 targeting immunotherapy. In this study, we performed a longitudinal study using our unique PCa patient-derived xenograft (PDX) models and assessed B7-H3 expression during post-ADT disease progression. We further validated our findings at the clinical level in PCa patient samples. We found that B7-H3 expression was negatively regulated by AR during the early phase of ADT treatment, but positively associated with PCa proliferation during the remainder of disease progression. Our findings suggest its use as a biomarker for diagnosis, prognosis, and ADT treatment response, and the potential of combining ADT and B7-H3 targeting immunotherapy for hormone-naïve PCa treatment to prevent fatal CRPC relapse.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Antagonistas de Androgênios/uso terapêutico , Estudos Longitudinais , Progressão da Doença , Recidiva Local de Neoplasia , Receptores Androgênicos/genética , Fatores de Transcrição , Hormônios/uso terapêutico , Antígenos B7/genética
6.
Cells ; 11(9)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563856

RESUMO

Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.


Assuntos
Antagonistas de Androgênios , Neoplasias de Próstata Resistentes à Castração , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Humanos , Masculino , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Análise de Sequência de RNA/métodos
7.
Front Cell Dev Biol ; 10: 890419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602596

RESUMO

TEAD4 (TEA Domain Transcription Factor 4) is well recognized as the DNA-anchor protein of YAP transcription complex, which is modulated by Hippo, a highly conserved pathway in Metazoa that controls organ size through regulating cell proliferation and apoptosis. To acquire full transcriptional activity, TEAD4 requires co-activator, YAP (Yes-associated protein) or its homolog TAZ (transcriptional coactivator with PDZ-binding motif) the signaling hub that relays the extracellular stimuli to the transcription of target genes. Growing evidence suggests that TEAD4 also exerts its function in a YAP-independent manner through other signal pathways. Although TEAD4 plays an essential role in determining that differentiation fate of the blastocyst, it also promotes tumorigenesis by enhancing metastasis, cancer stemness, and drug resistance. Upregulation of TEAD4 has been reported in several cancers, including colon cancer, gastric cancer, breast cancer, and prostate cancer and serves as a valuable prognostic marker. Recent studies show that TEAD4, but not other members of the TEAD family, engages in regulating mitochondrial dynamics and cell metabolism by modulating the expression of mitochondrial- and nuclear-encoded electron transport chain genes. TEAD4's functions including oncogenic activities are tightly controlled by its subcellular localization. As a predominantly nuclear protein, its cytoplasmic translocation is triggered by several signals, such as osmotic stress, cell confluency, and arginine availability. Intriguingly, TEAD4 is also localized in mitochondria, although the translocation mechanism remains unclear. In this report, we describe the current understanding of TEAD4 as an oncogene, epigenetic regulator and mitochondrial modulator. The contributing mechanisms will be discussed.

8.
Elife ; 112022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579416

RESUMO

Typhoid toxin is an essential virulence factor for Salmonella Typhi, the cause of typhoid fever in humans. This toxin has an unusual biology in that it is produced by Salmonella Typhi only when located within host cells. Once synthesized, the toxin is secreted to the lumen of the Salmonella-containing vacuole from where it is transported to the extracellular space by vesicle carrier intermediates. Here, we report the identification of the typhoid toxin sorting receptor and components of the cellular machinery that packages the toxin into vesicle carriers, and exports it to the extracellular space. We found that the cation-independent mannose-6-phosphate receptor serves as typhoid toxin sorting receptor and that the coat protein COPII and the GTPase Sar1 mediate its packaging into vesicle carriers. Formation of the typhoid toxin carriers requires the specific environment of the Salmonella Typhi-containing vacuole, which is determined by the activities of specific effectors of its type III protein secretion systems. We also found that Rab11B and its interacting protein Rip11 control the intracellular transport of the typhoid toxin carriers, and the SNARE proteins VAMP7, SNAP23, and Syntaxin 4 their fusion to the plasma membrane. Typhoid toxin's cooption of specific cellular machinery for its transport to the extracellular space illustrates the remarkable adaptation of an exotoxin to exert its function in the context of an intracellular pathogen.


Assuntos
Imunotoxinas , Febre Tifoide , Humanos , Imunotoxinas/metabolismo , Salmonella , Salmonella typhi/metabolismo
9.
Mol Cancer Res ; 20(5): 782-793, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35082166

RESUMO

Treatment-induced tumor dormancy is a state in cancer progression where residual disease is present but remains asymptomatic. Dormant cancer cells are treatment-resistant and responsible for cancer recurrence and metastasis. Prostate cancer treated with androgen-deprivation therapy (ADT) often enters a dormant state. ADT-induced prostate cancer dormancy remains poorly understood due to the challenge in acquiring clinical dormant prostate cancer cells and the lack of representative models. In this study, we aimed to develop clinically relevant models for studying ADT-induced prostate cancer dormancy. Dormant prostate cancer models were established by castrating mice bearing patient-derived xenografts (PDX) of hormonal naïve or sensitive prostate cancer. Dormancy status and tumor relapse were monitored and evaluated. Paired pre- and postcastration (dormant) PDX tissues were subjected to morphologic and transcriptome profiling analyses. As a result, we established eleven ADT-induced dormant prostate cancer models that closely mimicked the clinical courses of ADT-treated prostate cancer. We identified two ADT-induced dormancy subtypes that differed in morphology, gene expression, and relapse rates. We discovered transcriptomic differences in precastration PDXs that predisposed the dormancy response to ADT. We further developed a dormancy subtype-based, predisposed gene signature that was significantly associated with ADT response in hormonal naïve prostate cancer and clinical outcome in castration-resistant prostate cancer treated with ADT or androgen-receptor pathway inhibitors. IMPLICATIONS: We have established highly clinically relevant PDXs of ADT-induced dormant prostate cancer and identified two dormancy subtypes, leading to the development of a novel predicative gene signature that allows robust risk stratification of patients with prostate cancer to ADT or androgen-receptor pathway inhibitors.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Antagonistas de Androgênios/farmacologia , Antagonistas de Receptores de Andrógenos , Androgênios/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia
10.
Cancer Sci ; 112(7): 2781-2791, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33960594

RESUMO

The prevalence of neuroendocrine prostate cancer (NEPC) arising from adenocarcinoma (AC) upon potent androgen receptor (AR) pathway inhibition is increasing. Deeper understanding of NEPC biology and development of novel therapeutic agents are needed. However, research is hindered by the paucity of research models, especially cell lines developed from NEPC patients. We established a novel NEPC cell line, KUCaP13, from tissue of a patient initially diagnosed with AC which later recurred as NEPC. The cell line has been maintained permanently in vitro under regular cell culture conditions and is amenable to gene engineering with lentivirus. KUCaP13 cells lack the expression of AR and overexpress NEPC-associated genes, including SOX2, EZH2, AURKA, PEG10, POU3F2, ENO2, and FOXA2. Importantly, the cell line maintains the homozygous deletion of CHD1, which was confirmed in the primary AC of the index patient. Loss of heterozygosity of TP53 and PTEN, and an allelic loss of RB1 with a transcriptomic signature compatible with Rb pathway aberration were revealed. Knockdown of PEG10 using shRNA significantly suppressed growth in vivo. Introduction of luciferase allowed serial monitoring of cells implanted orthotopically or in the renal subcapsule. Although H3K27me was reduced by EZH2 inhibition, reversion to AC was not observed. KUCaP13 is the first patient-derived, treatment-related NEPC cell line with triple loss of tumor suppressors critical for NEPC development through lineage plasticity. It could be valuable in research to deepen the understanding of NEPC.


Assuntos
Adenocarcinoma/patologia , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral/patologia , Neoplasias da Próstata/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Carcinoma Neuroendócrino/genética , Carcinoma Neuroendócrino/secundário , Linhagem Celular Tumoral/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Ensaios de Seleção de Medicamentos Antitumorais , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Deleção de Genes , Expressão Gênica , Genes Neoplásicos , Genes do Retinoblastoma , Genes Supressores de Tumor , Genes p53 , Engenharia Genética , Xenoenxertos , Homozigoto , Humanos , Cariotipagem , Perda de Heterozigosidade , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Transplante de Neoplasias , PTEN Fosfo-Hidrolase/genética , Neoplasias Penianas/genética , Neoplasias Penianas/secundário , Neoplasias da Próstata/genética , Proteínas de Ligação a RNA/genética , Receptores Androgênicos
11.
ACS Appl Mater Interfaces ; 13(19): 22098-22109, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33945683

RESUMO

The emergence of bacteria resistant to antibiotics and the resulting infections are increasingly becoming a public health issue. Multidrug-resistant (MDR) bacteria are responsible for infections leading to increased morbidity and mortality in hospitals, prolonged time of hospitalization, and additional burden to financial costs. Therefore, there is an urgent need for novel antibacterial agents that will both treat MDR infections and outsmart the bacterial evolutionary mechanisms, preventing further resistance development. In this study, a green synthesis employing nontoxic lignin as both reducing and capping agents was adopted to formulate stable and biocompatible silver-lignin nanoparticles (NPs) exhibiting antibacterial activity. The resulting silver-lignin NPs were approximately 20 nm in diameter and did not agglomerate after one year of storage at 4 °C. They were able to inhibit the growth of a panel of MDR clinical isolates, including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii, at concentrations that did not affect the viability of a monocyte-derived THP-1 human cell line. Furthermore, the exposure of silver-lignin NPs to the THP-1 cells led to a significant increase in the secretion of the anti-inflammatory cytokine IL-10, demonstrating the potential of these particles to act as an antimicrobial and anti-inflammatory agent simultaneously. P. aeruginosa genes linked with efflux, heavy metal resistance, capsular biosynthesis, and quorum sensing were investigated for changes in gene expression upon sublethal exposure to the silver-lignin NPs. Genes encoding for membrane proteins with an efflux function were upregulated. However, all other genes were membrane proteins that did not efflux metals and were downregulated.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Lignina/química , Nanopartículas Metálicas , Prata/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Humanos , Inflamação/prevenção & controle , Testes de Sensibilidade Microbiana , Células THP-1
12.
Cancer Res ; 81(7): 1681-1694, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33441310

RESUMO

Low-grade serous ovarian carcinoma (LGSOC) is a rare tumor subtype with high case fatality rates in patients with metastatic disease. There is a pressing need to develop effective treatments using newly available preclinical models for therapeutic discovery and drug evaluation. Here, we use multiomics integration of whole-exome sequencing, RNA sequencing, and mass spectrometry-based proteomics on 14 LGSOC cell lines to elucidate novel biomarkers and therapeutic vulnerabilities. Comparison of LGSOC cell line data with LGSOC tumor data enabled predictive biomarker identification of MEK inhibitor (MEKi) efficacy, with KRAS mutations found exclusively in MEKi-sensitive cell lines and NRAS mutations found mostly in MEKi-resistant cell lines. Distinct patterns of Catalogue of Somatic Mutations in Cancer mutational signatures were identified in MEKi-sensitive and MEKi-resistant cell lines. Deletions of CDKN2A/B and MTAP genes were more frequent in cell lines than tumor samples and possibly represent key driver events in the absence of KRAS/NRAS/BRAF mutations. These LGSOC cell lines were representative models of the molecular aberrations found in LGSOC tumors. For prediction of in vitro MEKi efficacy, proteomic data provided better discrimination than gene expression data. Condensin, minichromosome maintenance, and replication factor C protein complexes were identified as potential treatment targets in MEKi-resistant cell lines. This study suggests that CDKN2A/B or MTAP deficiency may be exploited using synthetically lethal treatment strategies, highlighting the importance of using proteomic data as a tool for molecular drug prediction. Multiomics approaches are crucial to improving our understanding of the molecular underpinnings of LGSOC and applying this information to develop new therapies. SIGNIFICANCE: These findings highlight the utility of global multiomics to characterize LGSOC cell lines as research models, to determine biomarkers of MEKi resistance, and to identify potential novel therapeutic targets.


Assuntos
Biomarcadores Farmacológicos/análise , Cistadenocarcinoma Seroso/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/isolamento & purificação , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Genômica/métodos , Humanos , Metabolômica/métodos , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteômica/métodos , Integração de Sistemas
13.
Bioinformatics ; 36(12): 3703-3711, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259207

RESUMO

MOTIVATION: The ubiquitous abundance of circular RNAs (circRNAs) has been revealed by performing high-throughput sequencing in a variety of eukaryotes. circRNAs are related to some diseases, such as cancer in which they act as oncogenes or tumor-suppressors and, therefore, have the potential to be used as biomarkers or therapeutic targets. Accurate and rapid detection of circRNAs from short reads remains computationally challenging. This is due to the fact that identifying chimeric reads, which is essential for finding back-splice junctions, is a complex process. The sensitivity of discovery methods, to a high degree, relies on the underlying mapper that is used for finding chimeric reads. Furthermore, all the available circRNA discovery pipelines are resource intensive. RESULTS: We introduce CircMiner, a novel stand-alone circRNA detection method that rapidly identifies and filters out linear RNA sequencing reads and detects back-splice junctions. CircMiner employs a rapid pseudo-alignment technique to identify linear reads that originate from transcripts, genes or the genome. CircMiner further processes the remaining reads to identify the back-splice junctions and detect circRNAs with single-nucleotide resolution. We evaluated the efficacy of CircMiner using simulated datasets generated from known back-splice junctions and showed that CircMiner has superior accuracy and speed compared to the existing circRNA detection tools. Additionally, on two RNase R treated cell line datasets, CircMiner was able to detect most of consistent, high confidence circRNAs compared to untreated samples of the same cell line. AVAILABILITY AND IMPLEMENTATION: CircMiner is implemented in C++ and is available online at https://github.com/vpc-ccg/circminer. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Circular , RNA , Sequência de Bases , RNA/genética , Splicing de RNA , Análise de Sequência de RNA
14.
Sci Rep ; 10(1): 2026, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029828

RESUMO

Clear-cell renal cell carcinoma (ccRCC) is a common therapy resistant disease with aberrant angiogenic and immunosuppressive features. Patients with metastatic disease are treated with targeted therapies based on clinical features: low-risk patients are usually treated with anti-angiogenic drugs and intermediate/high-risk patients with immune therapy. However, there are no biomarkers available to guide treatment choice for these patients. A recently published phase II clinical trial observed a correlation between ccRCC patients' clustering and their response to targeted therapy. However, the clustering of these groups was not distinct. Here, we analyzed the gene expression profile of 469 ccRCC patients, using featured selection technique, and have developed a refined 66-gene signature for improved sub-classification of patients. Moreover, we have identified a novel comprehensive expression profile to distinguish between migratory stromal and immune cells. Furthermore, the proposed 66-gene signature was validated using a different cohort of 64 ccRCC patients. These findings are foundational for the development of reliable biomarkers that may guide treatment decision-making and improve therapy response in ccRCC patients.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Medicina de Precisão/métodos , Inibidores da Angiogênese/farmacologia , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Carcinoma de Células Renais/genética , Tomada de Decisão Clínica/métodos , Análise por Conglomerados , Estudos de Coortes , Conjuntos de Dados como Assunto , Estudos de Viabilidade , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Renais/genética , Masculino , Oncologia/métodos , Pessoa de Meia-Idade , Seleção de Pacientes , Prognóstico , Transcriptoma/genética
15.
Mycobiology ; 48(3): 219-227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-37970558

RESUMO

Androgen-independent prostate cancer accounts for mortality in the world. In this study, various extracts of a medical fungus dubbed Ganoderma formosanum were screened for inhibition of DU145 cells, an androgen-independent prostate cancer cell line. Results demonstrated that both hexane (GF-EH) and butanol (GF-EB) fraction of G. formosanum ethanol extract inhibited DU145 cell viability in a dose-dependent manner. GF-EH induced cell-cycle arrest in G1 phase of DU145 cells via downregulation of cyclin E2 protein expression. In addition, GF-EB triggered extrinsic apoptosis of DU145 cells by activating caspase 3 gene expression resulting in programed cell death. Above all, both GF-EH and GF-EB show lower toxicity to normal human fibroblast cell line compared to DU145 cell, implying that they possess specific drug action on cancer cells. This study provides a molecular basis of G. formosanum extract as a potential ingredient for treatment of androgen-independent prostate cancer.

16.
Cancer Res ; 79(13): 3320-3331, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064850

RESUMO

Aberrant cholesterol metabolism is increasingly appreciated to be essential for prostate cancer initiation and progression. Transcript expression of the high-density lipoprotein-cholesterol receptor scavenger receptor B1 (SR-B1) is elevated in primary prostate cancer. Hypothesizing that SR-B1 expression may help facilitate malignant transformation, we document increased SR-B1 protein and transcript expression in prostate cancer relative to normal prostate epithelium that persists in lethal castration-resistant prostate cancer (CRPC) metastasis. As intratumoral steroid synthesis from the precursor cholesterol can drive androgen receptor (AR) pathway activity in CRPC, we screened androgenic benign and cancer cell lines for sensitivity to SR-B1 antagonism. Benign cells were insensitive to SR-B1 antagonism, and cancer line sensitivity inversely correlated with expression levels of full-length and splice variant AR. In androgen-responsive CRPC cell model C4-2, SR-B1 antagonism suppressed cholesterol uptake, de novo steroidogenesis, and AR activity. SR-B1 antagonism also suppressed growth and viability and induced endoplasmic reticulum stress and autophagy. The inability of exogenous steroids to reverse these effects indicates that AR pathway activation is insufficient to overcome cytotoxic stress caused by a decrease in the availability of cholesterol. Furthermore, SR-B1 antagonism decreased cholesterol uptake, growth, and viability of the AR-null CRPC cell model PC-3, and the small-molecule SR-B1 antagonist block lipid transport-1 decreased xenograft growth rate despite poor pharmacologic properties. Overall, our findings show that SR-B1 is upregulated in primary and castration-resistant disease and is essential for cholesterol uptake needed to drive both steroidogenic and nonsteroidogenic biogenic pathways, thus implicating SR-B1 as a novel and potentially actionable target in CRPC. SIGNIFICANCE: These findings highlight SR-B1 as a potential target in primary and castration-resistant prostate cancer that is essential for cholesterol uptake needed to drive steroidogenic and nonsteroidogenic biogenic pathways.


Assuntos
Androgênios/metabolismo , Neoplasias Ósseas/secundário , Colesterol/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Depuradores Classe B/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/cirurgia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/cirurgia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirurgia , Masculino , Camundongos , Camundongos Nus , Orquiectomia , Prognóstico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/cirurgia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores Depuradores Classe B/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nucleic Acids Res ; 47(7): e38, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30759232

RESUMO

MOTIVATION: Cancer is a complex disease that involves rapidly evolving cells, often forming multiple distinct clones. In order to effectively understand progression of a patient-specific tumor, one needs to comprehensively sample tumor DNA at multiple time points, ideally obtained through inexpensive and minimally invasive techniques. Current sequencing technologies make the 'liquid biopsy' possible, which involves sampling a patient's blood or urine and sequencing the circulating cell free DNA (cfDNA). A certain percentage of this DNA originates from the tumor, known as circulating tumor DNA (ctDNA). The ratio of ctDNA may be extremely low in the sample, and the ctDNA may originate from multiple tumors or clones. These factors present unique challenges for applying existing tools and workflows to the analysis of ctDNA, especially in the detection of structural variations which rely on sufficient read coverage to be detectable. RESULTS: Here we introduce SViCT , a structural variation (SV) detection tool designed to handle the challenges associated with cfDNA analysis. SViCT can detect breakpoints and sequences of various structural variations including deletions, insertions, inversions, duplications and translocations. SViCT extracts discordant read pairs, one-end anchors and soft-clipped/split reads, assembles them into contigs, and re-maps contig intervals to a reference genome using an efficient k-mer indexing approach. The intervals are then joined using a combination of graph and greedy algorithms to identify specific structural variant signatures. We assessed the performance of SViCT and compared it to state-of-the-art tools using simulated cfDNA datasets with properties matching those of real cfDNA samples. The positive predictive value and sensitivity of our tool was superior to all the tested tools and reasonable performance was maintained down to the lowest dilution of 0.01% tumor DNA in simulated datasets. Additionally, SViCT was able to detect all known SVs in two real cfDNA reference datasets (at 0.6-5% ctDNA) and predict a novel structural variant in a prostate cancer cohort. AVAILABILITY: SViCT is available at https://github.com/vpc-ccg/svict. Contact:faraz.hach@ubc.ca.


Assuntos
Algoritmos , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Análise Mutacional de DNA/métodos , Mutação , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Conjuntos de Dados como Assunto , Humanos , Masculino , Neoplasias da Próstata/genética , Sensibilidade e Especificidade
18.
Genome Med ; 11(1): 8, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777124

RESUMO

BACKGROUND: Malignant peritoneal mesothelioma (PeM) is a rare and fatal cancer that originates from the peritoneal lining of the abdomen. Standard treatment of PeM is limited to cytoreductive surgery and/or chemotherapy, and no effective targeted therapies for PeM exist. Some immune checkpoint inhibitor studies of mesothelioma have found positivity to be associated with a worse prognosis. METHODS: To search for novel therapeutic targets for PeM, we performed a comprehensive integrative multi-omics analysis of the genome, transcriptome, and proteome of 19 treatment-naïve PeM, and in particular, we examined BAP1 mutation and copy number status and its relationship to immune checkpoint inhibitor activation. RESULTS: We found that PeM could be divided into tumors with an inflammatory tumor microenvironment and those without and that this distinction correlated with haploinsufficiency of BAP1. To further investigate the role of BAP1, we used our recently developed cancer driver gene prioritization algorithm, HIT'nDRIVE, and observed that PeM with BAP1 haploinsufficiency form a distinct molecular subtype characterized by distinct gene expression patterns of chromatin remodeling, DNA repair pathways, and immune checkpoint receptor activation. We demonstrate that this subtype is correlated with an inflammatory tumor microenvironment and thus is a candidate for immune checkpoint blockade therapies. CONCLUSIONS: Our findings reveal BAP1 to be a potential, easily trackable prognostic and predictive biomarker for PeM immunotherapy that refines PeM disease classification. BAP1 stratification may improve drug response rates in ongoing phases I and II clinical trials exploring the use of immune checkpoint blockade therapies in PeM in which BAP1 status is not considered. This integrated molecular characterization provides a comprehensive foundation for improved management of a subset of PeM patients.


Assuntos
Biomarcadores Tumorais/genética , Haploinsuficiência , Mesotelioma/genética , Neoplasias Peritoneais/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Biomarcadores Tumorais/metabolismo , Humanos , Imunoterapia , Mesotelioma/classificação , Mesotelioma/terapia , Mutação , Neoplasias Peritoneais/classificação , Neoplasias Peritoneais/terapia , Microambiente Tumoral , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
19.
Bioinformatics ; 34(18): 3101-3110, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29617966

RESUMO

Motivation: Long non-coding RNAs (lncRNAs) are defined as transcripts longer than 200 nt that do not get translated into proteins. Often these transcripts are processed (spliced, capped and polyadenylated) and some are known to have important biological functions. However, most lncRNAs have unknown or poorly understood functions. Nevertheless, because of their potential role in cancer, lncRNAs are receiving a lot of attention, and the need for computational tools to predict their possible mechanisms of action is more than ever. Fundamentally, most of the known lncRNA mechanisms involve RNA-RNA and/or RNA-protein interactions. Through accurate predictions of each kind of interaction and integration of these predictions, it is possible to elucidate potential mechanisms for a given lncRNA. Results: Here, we introduce MechRNA, a pipeline for corroborating RNA-RNA interaction prediction and protein binding prediction for identifying possible lncRNA mechanisms involving specific targets or on a transcriptome-wide scale. The first stage uses a version of IntaRNA2 with added functionality for efficient prediction of RNA-RNA interactions with very long input sequences, allowing for large-scale analysis of lncRNA interactions with little or no loss of optimality. The second stage integrates protein binding information pre-computed by GraphProt, for both the lncRNA and the target. The final stage involves inferring the most likely mechanism for each lncRNA/target pair. This is achieved by generating candidate mechanisms from the predicted interactions, the relative locations of these interactions and correlation data, followed by selection of the most likely mechanistic explanation using a combined P-value. We applied MechRNA on a number of recently identified cancer-related lncRNAs (PCAT1, PCAT29 and ARLnc1) and also on two well-studied lncRNAs (PCA3 and 7SL). This led to the identification of hundreds of high confidence potential targets for each lncRNA and corresponding mechanisms. These predictions include the known competitive mechanism of 7SL with HuR for binding on the tumor suppressor TP53, as well as mechanisms expanding what is known about PCAT1 and ARLn1 and their targets BRCA2 and AR, respectively. For PCAT1-BRCA2, the mechanism involves competitive binding with HuR, which we confirmed using HuR immunoprecipitation assays. Availability and implementation: MechRNA is available for download at https://bitbucket.org/compbio/mechrna. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
RNA Longo não Codificante/genética , Fenômenos Bioquímicos , Proteínas/metabolismo , Software , Transcriptoma
20.
Biomacromolecules ; 19(2): 544-554, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29334612

RESUMO

Biocompatible bacterial cellulose pellicle (BCP) is a candidate for biomedical material such as wound dressing. However, due to lack of antibacterial activity, to grant BCP with the property is crucial for its biomedical application. In the present study, BCP was modified by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation using TEMPO/NaClO/NaBr system at pH 10 to form TEMPO-oxidized BCP (TOBCP) with anionic C6 carboxylate groups. The TOBCP was subsequently ion-exchanged in AgNO3 solution and silver nanoparticles (AgNP) with diameter of ∼16.5 nm were in situ synthesized on TOBC nanofiber surfaces by thermal reduction without using a reducing agent. Field emission scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectra, Fourier transform infrared spectroscopy, and thermogravimetric analysis were carried out to confirm morphology and structure of the pellicles with AgNP. The AgNP continuously released Ag+ with a rate of 12.2%/day at 37 °C in 3 days. The TOBCP/AgNP exhibited high biocompatibility according to the result of in vitro cytotoxicity test (cell viability >95% after 48 h of incubation) and showed significant antibacterial activities of 100% and 99.2% against E. coli and S. aureus, respectively. Hence, the highly biocompatible and highly antibacterial TOBCP/AgNP prepared in the present study is a promising candidate for wound dressing.


Assuntos
Antibacterianos , Celulose , Óxidos N-Cíclicos/química , Escherichia coli/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Prata , Staphylococcus aureus/crescimento & desenvolvimento , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Celulose/química , Celulose/farmacologia , Camundongos , Células NIH 3T3 , Oxirredução , Prata/química , Prata/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...