Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 659: 439-448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38183810

RESUMO

In this study, a Co3O4 catalyst is synthesised using the chitosan-assisted sol-gel method, which simultaneously regulates the grain size, Co valence and surface acidity of the catalyst through a chitosan functional group. The complexation of the free -NH2 complex inhibits particle agglomeration; thus, the average particle size of the catalyst decreases from 82 to 31 nm. Concurrently, Raman spectroscopy, hydrogen temperature-programmed reduction, electron paramagnetic resonance spectroscopy and X-ray photoelectron spectroscopy experiments demonstrate that doping with chitosan N sources effectively modulates Co2+ to promote the formation of oxygen vacancies. In addition, water washing after catalyst preparation can considerably improve the low-temperature (below 250 °C) activity of the catalyst and eliminate the side effects of alkali metal on catalyst activity. Moreover, the presence of Brønsted and Lewis acid sites promotes the adsorption of C8H8. Consequently, CS/Co3O4-W presents the highest catalytic oxidation activity for C8H8 at low temperatures (R250 °C = 8.33 µmol g-1 s-1, WHSV = 120,000 mL hr-1∙g-1). In situ DRIFTS and 18O2 isotope experiments demonstrate that the oxidation of the C8H8 reaction is primarily dominated by the Mars-van Krevelen mechanism. Furthermore, CS/Co3O4-W exhibits superior water resistance (1- and 2- vol% H2O), which has the potential to be implemented in industrial applications.

2.
ACS Appl Mater Interfaces ; 15(27): 32404-32415, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368238

RESUMO

In the oxidation reaction of volatile organic compounds catalyzed by metal oxides, distinguishing the role of active metal sites and oxygen mobility at specific preferentially exposed crystal planes and diverse temperatures is challenging. Herein, Co3O4 catalysts with four different preferentially exposed crystal planes [(220), (222), (311), and (422)] and oxygen vacancy formation energies were synthesized and evaluated in styrene complete oxidation. It is demonstrated that the Co3O4 sheet (Co3O4-I) presents the highest C8H8 catalytic oxidation activity (R250 °C = 8.26 µmol g-1 s-1 and WHSV = 120,000 mL h-1 g-1). Density functional theory studies reveal that it is difficult for the (311) and (222) crystal planes to form oxygen vacancies, but the (222) crystal plane is the most favorable for C8H8 adsorption regardless of the presence of oxygen vacancies. The combined analysis of temperature-programmed desorption and temperature-programmed surface reaction of C8H8 proves that Co3O4-I possesses the best C8H8 oxidation ability. It is proposed that specific surface area is vital at low temperature (below 250 °C) because it is related to the amount of surface-adsorbed oxygen species and low-temperature reducibility, while the ratio of surface Co3+/Co2+ plays a decisive role at higher temperature because of facile lattice oxygen mobility. In situ diffuse reflectance infrared Fourier spectroscopy and the 18O2 isotope experiment demonstrate that C8H8 oxidation over Co3O4-I, Co3O4-S, Co3O4-C, and Co3O4-F is mainly dominated by the Mars-van Krevelen mechanism. Furthermore, Co3O4-I shows superior thermal stability (57 h) and water resistance (1, 3, and 5 vol % H2O), which has the potential to be conducted in the actual industrial application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...