Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 13(16): 4598-4607, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35656137

RESUMO

Alloy nanoparticles represent one of the most important metal materials, finding increasing applications in diverse fields of catalysis, biomedicine, and nano-optics. However, the structural evolution of bimetallic nanoparticles in their full composition spectrum has been rarely explored at the molecular and atomic levels, imparting inherent difficulties to establish a reliable structure-property relationship in practical applications. Here, through an inter-particle reaction between [Au44(SR)26]2- and [Ag44(SR)30]4- nanoparticles or nanoclusters (NCs), which possess the same number of metal atoms, but different atomic packing structures, we reveal the composition-dependent structural evolution of alloy NCs in the alloying process at the molecular and atomic levels. In particular, an inter-cluster reaction can produce three sets of Au x Ag44-x NCs in a wide composition range, and the structure of Au x Ag44-x NCs evolves from Ag-rich [Au x Ag44-x (SR)30]4- (x = 1-12), to evenly mixed [Au x Ag44-x (SR)27]3- (x = 19-24), and finally to Au-rich [Au x Ag44-x (SR)26]2- (x = 40-43) NCs, with the increase of the Au/Ag atomic ratio in the NC composition. In addition, leveraging on real-time electrospray ionization mass spectrometry (ESI-MS), we reveal the different inter-cluster reaction mechanisms for the alloying process in the sub-3-nm regime, including partial decomposition-reconstruction and metal exchange reactions. The molecular-level inter-cluster reaction demonstrated in this study provides a fine chemistry to customize the composition and structure of bimetallic NCs in their full alloy composition spectrum, which will greatly increase the acceptance of bimetallic NCs in both basic and applied research.

2.
J Food Prot ; 85(3): 484-493, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855936

RESUMO

ABSTRACT: The consumption of cheese in the People's Republic of China is increasing rapidly. Little is known about the microbiota, the presence of antibiotic-resistant bacteria, or the distribution of antibiotic resistance genes (ARGs) in commercially produced cheeses sold in China. This information is important for evaluating quality and safety. This study was conducted using 16S rRNA gene sequencing to assess the metagenomics of 15 types of cheese. Fourteen bacterial genera were detected, and Lactococcus, Lactobacillus, and Streptococcus were dominant based on number of sequence reads. Multidrug-resistant lactic acid bacteria (i.e., resistant to two or more types of antibiotic) were isolated from most of the types of cheese. Of these isolates, 100 and 91.7% were resistant to streptomycin and sulfamethoxazole, respectively, and genes involved in acquired resistance to streptomycin (strB) and sulfonamides (sul2) were detected with high frequency. To analyze the distribution of ARGs in the cheeses overall, 309 ARGs from eight categories and nine transposase genes were profiled. A total of 169 ARGs were detected in the 15 cheeses; their occurrence and abundance varied significantly between cheeses. Our study revealed diverse bacteria and ARGs in cheeses sold in China. The risks associated with multidrug resistance among dominant lactic acid bacteria are of great concern.


Assuntos
Queijo , Animais , Bactérias , Queijo/microbiologia , China , Resistência Microbiana a Medicamentos , Humanos , Leite/microbiologia , RNA Ribossômico 16S/genética
3.
Angew Chem Int Ed Engl ; 61(9): e202115647, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34918861

RESUMO

Surface modification induced core size/structure change is a recent discovery in inorganic nanoparticles research, and has rarely been revealed at the molecular level. Here, we exemplify with atomically precise Au nanoclusters (NCs) that proper surface modification can selectively stabilize the desired Au0 core, conducive to the formation of size/structure-controlled Au NCs. Leveraging π-π enhanced ion-pairing interactions, ionic liquid (IL) cations are bonded to AuI -thiolate complexes. The hydrophobic-hydrophobic interactions between IL cations subsequently provide a good mechanism to prolong the size of the AuI -thiolate complexes, selectively producing small-sized Au NCs upon reduction. Through combined control over the structure and concentration of IL cations, pH and solvent polarity, we are able to produce atomically precise Au NCs with customizable size, atomic packing structure, and surface chemistry. This work also provides a facile means to integrate/synergize the materials functionalities of Au NCs and ILs, increasing their acceptance in diverse fields.

4.
Foodborne Pathog Dis ; 18(12): 859-866, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34415782

RESUMO

Antibiotic resistance genes (ARGs) are emerging contaminants that pose a health risk to humans worldwide. Little information on ARGs in bee honey is available. This study profiles ARGs in bee honey samples produced in China, the biggest producer in the world. Of 317 known ARGs encoding resistance to 8 classes of antibiotics, 212 were found in collected honey samples by a real-time quantitative polymerase chain reaction approach. Occurrence frequencies of genes providing resistance to FCA (fluoroquinolone, quinolone, florfenicol, chloramphenicol, and amphenicol) and aminoglycosides were 21.0% and 18.5%, respectively. Frequencies of genes encoding efflux pumps were 42.5% and those of destructase genes 36.6%, indicating that these two mechanisms were predominant for resistance. Nine plasmid-mediated quinolone resistance genes were detected. Of the nine transposase genes known to be involved in antibiotic resistance, eight were found in the samples examined, with tnpA-4, tnpA-5, and tnpA-6 being more abundant. The abundance of the transposase genes was associated with genes conferring resistance to tetracyclines (r = 0.648, p < 0.01), macrolide-lincosamide-streptogramin B (r = 0.642, p < 0.01), FCA (r = 0.517, p < 0.01), and aminoglycosides (r = 0.401, 0.01 < p < 0.05). This is the first study on the abundance and diversity of ARGs in Chinese bee honey products. These findings suggest that bee honey may be a significant source of ARGs that might pose threat to public health. Further research is required to collect more samples in diverse geographic regions in China to make a more comprehensive judgment of ARG in bee honey.


Assuntos
Antibacterianos , Mel , Animais , Antibacterianos/farmacologia , China , Resistência Microbiana a Medicamentos , Genes Bacterianos , Tetraciclinas
5.
Chem Sci ; 12(1): 99-127, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163584

RESUMO

Thiolate-protected noble metal (e.g., Au and Ag) nanoclusters (NCs) are ultra-small particles with a core size of less than 3 nm. Due to the strong quantum confinement effects and diverse atomic packing modes in this ultra-small size regime, noble metal NCs exhibit numerous molecule-like optical, magnetic, and electronic properties, making them an emerging family of "metallic molecules". Based on such molecule-like structures and properties, an individual noble metal NC behaves as a molecular entity in many chemical reactions, and exhibits structurally sensitive molecular reactivity to various ions, molecules, and other metal NCs. Although this molecular reactivity determines the application of NCs in various fields such as sensors, biomedicine, and catalysis, there is still a lack of systematic summary of the molecular interaction/reaction fundamentals of noble metal NCs at the molecular and atomic levels in the current literature. Here, we discuss the latest progress in understanding and exploiting the molecular interactions/reactions of noble metal NCs in their synthesis, self-assembly and application scenarios, based on the typical M(0)@M(i)-SR core-shell structure scheme, where M and SR are the metal atom and thiolate ligand, respectively. In particular, the continuous development of synthesis and characterization techniques has enabled noble metal NCs to be produced with molecular purity and atomically precise structural resolution. Such molecular purity and atomically precise structure, coupled with the great help of theoretical calculations, have revealed the active sites in various structural hierarchies of noble metal NCs (e.g., M(0) core, M-S interface, and SR ligand) for their molecular interactions/reactions. The anatomy of such molecular interactions/reactions of noble metal NCs in synthesis, self-assembly, and applications (e.g., sensors, biomedicine, and catalysis) constitutes another center of our discussion. The basis and practicality of the molecular interactions/reactions of noble metal NCs exemplified in this Review may increase the acceptance of metal NCs in various fields.

6.
Environ Int ; 128: 37-45, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31029978

RESUMO

Oil contamination will seriously affect the health of water environment, so it is necessary to design ideal oil absorbents with large absorption capacity and high selectivity for effectively purify the oil contaminated water. Preparing high performance carbon aerogel for oil absorption has attracted growing attention, but challenges remain. Here we report a facile approach to fabricate mechanical strength enhanced three-dimensional (3D) nanofibrous aerogel principally through supporting agent liquid assisted collection-electrospinning technology, in which the immersion work was applied to measure the immersion capacity of nanofibers according to liquid-solid interfaces theory. Particularly, electrospun polyacrylonitrile (PAN) nanofibers (NFs) were collected directly in graphene oxide (GO) aqueous dispersion, and the continuous fibrous skeleton assembled with two-dimensional (2D) GO sheets to form open porous networks during the electrospinning process, which basically avoided the tedious preparation steps (nanofiber membrane cutting and re-crosslinking) that have been used previously. Due to the open porous networks promising structure stability of the aerogel, the GO sheets content required in the aerogel stacking process was largely reduced, and there was no strict requirement on the pre-freezing temperature and manner in the subsequent freeze-drying process. Furthermore, followed by thermal treating the PAN NFs/GO composite aerogel, fluffy carbon nanofibers/GO aerogels (CNF/GOAs) were obtained, which exhibited ultra-low density (2-3 mg/mL) and great compressibility (80%). After hydrophobic modification of polydimethylsiloxane by vapor deposition, the CNF/GOAs performed high absorption capacity (120-286 wt/wt) toward diverse oils. Owing to the fire-resistance and great elasticity, the CNF/GOAs could be recycled simply by combustion or mechanical squeeze, and still showed great absorption capacity after 10 cycles, which were feasible for large scale application.


Assuntos
Carbono/química , Géis/química , Nanocompostos/química , Óleos , Poluentes Químicos da Água , Absorção Fisico-Química , Grafite/química , Nanofibras/química , Óleos/química , Óleos/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...