Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870294

RESUMO

BACKGROUND AND AIMS: The hallmark of NAFLD or hepatic steatosis is characterized by lipid droplet (LD) accumulation in hepatocytes. Autophagy may have profound effects on lipid metabolism and innate immune response. However, how innate immune activation may regulate the autophagic degradation of intracellular LDs remains elusive. APPROACH AND RESULTS: A mouse model of a high-fat diet-induced NASH was used in the myeloid-specific stimulator of interferon genes (STING) knockout or STING/yes-associated protein (YAP) double knockout mice. Liver injury, lipid accumulation, lipid droplet proteins, autophagic genes, chromatin immunoprecipitation coupled with massively parallel sequencing, and RNA-Seq were assessed in vivo and in vitro . We found that high-fat diet-induced oxidative stress activates STING and YAP pathways in hepatic macrophages. The acrophage STING deficiency (myeloid-specific STING knockout) enhances nuclear YAP activity, reduces lipid accumulation, and increases autophagy-related proteins ATG5, ATG7, and light chain 3B but diminishes LD protein perilipin 2 expression. However, disruption of STING and YAP (myeloid STING and YAP double knockout) increases serum alanine aminotransferase and triglyceride levels and reduces ß-fatty acid oxidation gene expression but augments perilipin 2 levels, exacerbating high-fat diet-induced lipid deposition. Chromatin immunoprecipitation coupled with massively parallel sequencing reveals that macrophage YAP targets transmembrane protein 205 and activates AMP-activated protein kinase α, which interacts with hepatocyte mitofusin 2 and induces protein disulfide isomerase activation. Protein disulfide isomerase activates hypoxia-inducible factor-1α signaling, increases autophagosome colocalization with LDs, and promotes the degradation of perilipin 2 by interacting with chaperone-mediated autophagy chaperone HSC70. CONCLUSIONS: The macrophage STING-YAP axis controls hepatic steatosis by reprogramming lipid metabolism in a transmembrane protein 205/mitofusin 2/protein disulfide isomerase-dependent pathway. These findings highlight the regulatory mechanism of the macrophage STING-driven YAP activity on lipid control.

2.
Cell Commun Signal ; 21(1): 282, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828624

RESUMO

BACKGROUND: Caspase 6 is an essential regulator in innate immunity, inflammasome activation and host defense. We aimed to characterize the causal mechanism of Caspase 6 in liver sterile inflammatory injury. METHODS: Human liver tissues were harvested from patients undergoing ischemia-related hepatectomy to evaluate Caspase 6 expression. Subsequently, we created Caspase 6-knockout (Caspase 6KO) mice to analyze roles and molecular mechanisms of macrophage Caspase 6 in murine models of liver ischemia/reperfusion (IR) injury. RESULTS: In human liver biopsies, Caspase 6 expression was positively correlated with more severe histopathological injury and higher serum ALT/AST level at one day postoperatively. Moreover, Caspase 6 was mainly elevated in macrophages but not hepatocytes in ischemic livers. Unlike in controls, the Caspase 6-deficient livers were protected against IR injury, as evidenced by inhibition of inflammation, oxidative stress and iron overload. Disruption of macrophage NF-κB essential modulator (NEMO) in Caspase 6-deficient livers deteriorated liver inflammation and ferroptosis. Mechanistically, Caspase 6 deficiency spurred NEMO-mediated IκBα phosphorylation in macrophage. Then phosphorylated-inhibitor of NF-κBα (p-IκBα) co-localized with receptor-interacting serine/ threonine-protein kinase 1 (RIPK1) in the cytoplasm to degradate RIPK1 under inflammatory conditions. The disruption of RIPK1-IκBα interaction preserved RIPK1 degradation, triggering downstream apoptosis signal-regulating kinase 1 (ASK1) phosphorylation and inciting NIMA-related kinase 7/NOD-like receptor family pyrin domain containing 3 (NEK7/NLRP3) activation in macrophages. Moreover, ablation of macrophage RIPK1 or ASK1 diminished NEK7/NLRP3-driven inflammatory response and dampened hepatocyte ferroptosis by reducing HMGB1 release from macrophages. CONCLUSIONS: Our findings underscore a novel mechanism of Caspase 6 mediated RIPK1-IκBα interaction in regulating macrophage NEK7/NLRP3 function and hepatocytes ferroptosis, which provides therapeutic targets for clinical liver IR injury. Video Abstract.


Assuntos
Caspase 6 , Imunidade Inata , Transdução de Sinais , Animais , Humanos , Camundongos , Caspase 6/metabolismo , Inflamação/metabolismo , Isquemia/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Inibidor de NF-kappaB alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
3.
Cell Death Discov ; 9(1): 106, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977670

RESUMO

The mechanism of nonalcoholic fatty liver susceptibility to ischemia/reperfusion (IR) injury has not been fully clarified. Caspase 6 is a critical regulator in innate immunity and host defense. We aimed to characterize the specific role of Caspase 6 in IR-induced inflammatory responses in fatty livers. Human fatty liver samples were harvested from patients undergoing ischemia-related hepatectomy to evaluate Caspase 6 expression. in mice model, we generated Caspase 6-knockout (Caspase 6KO) mice to investigate cellular and molecular mechanisms of macrophage Caspase 6 in IR-stimulated fatty livers. In human liver biopsies, Caspase 6 expression was upregulated combined with enhanced serum ALT level and severe histopathological injury in ischemic fatty livers. Moreover, Caspase 6 was mainly accumulated in macrophages but not hepatocytes. Unlike in controls, the Caspase 6-deficiency attenuated liver damage and inflammation activation. Activation of macrophage NR4A1 or SOX9 in Caspase 6-deficient livers aggravated liver inflammation. Mechanistically, macrophage NR4A1 co-localized with SOX9 in the nuclear under inflammatory conditions. Specifically, SOX9 acts as a coactivator of NR4A1 to directly target S100A9 transcription. Furthermore, macrophage S100A9 ablation dampened NEK7/NLRP3-driven inflammatory response and pyroptosis in macrophages. In conclusion, our findings identify a novel role of Caspase 6 in regulating NR4A1/SOX9 interaction in response to IR-stimulated fatty liver inflammation, and provide potential therapeutic targets for the prevention of fatty liver IR injury.

4.
JHEP Rep ; 4(9): 100532, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36035360

RESUMO

Background & Aims: The stimulator of interferon genes (STING)/TANK-binding kinase 1 (TBK1) pathway is vital in mediating innate immune and inflammatory responses during oxidative/endoplasmic reticulum (ER) stress. However, it remains unknown whether macrophage thioredoxin-interacting protein (TXNIP) may regulate TBK1 function and cell death pathways during oxidative/ER stress. Methods: A mouse model of hepatic ischaemia/reperfusion injury (IRI), the primary hepatocytes, and bone marrow-derived macrophages were used in the myeloid-specific TXNIP knockout (TXNIPM-KO) and TXNIP-proficient (TXNIPFL/FL) mice. Results: The TXNIPM-KO mice were resistant to ischaemia/reperfusion (IR) stress-induced liver damage with reduced serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators compared with the TXNIPFL/FL controls. IR stress increased TXNIP, p-STING, and p-TBK1 expression in ischaemic livers. However, TXNIPM-KO inhibited STING, TBK1, interferon regulatory factor 3 (IRF3), and NF-κB activation with interferon-ß (IFN-ß) expression. Interestingly, TXNIPM-KO augmented nuclear factor (erythroid-derived 2)-like 2 (NRF2) activity, increased antioxidant gene expression, and reduced macrophage reactive oxygen species (ROS) production and hepatic apoptosis/necroptosis in IR-stressed livers. Mechanistically, macrophage TXNIP deficiency promoted cylindromatosis (CYLD), which colocalised and interacted with NADPH oxidase 4 (NOX4) to enhance NRF2 activity by deubiquitinating NOX4. Disruption of macrophage NRF2 or its target gene 2',5' oligoadenylate synthetase-like 1 (OASL1) enhanced Ras GTPase-activating protein-binding protein 1 (G3BP1) and TBK1-mediated inflammatory response. Notably, macrophage OASL1 deficiency induced hepatocyte apoptotic peptidase activating factor 1 (APAF1), cytochrome c, and caspase-9 activation, leading to increased caspase-3-initiated apoptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated necroptosis. Conclusions: Macrophage TXNIP deficiency enhances CYLD activity and activates the NRF2-OASL1 signalling, controlling IR stress-induced liver injury. The target gene OASL1 regulated by NRF2 is crucial for modulating STING-mediated TBK1 activation and Apaf1/cytochrome c/caspase-9-triggered apoptotic/necroptotic cell death pathway. Our findings underscore a novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death, implying the potential therapeutic targets in liver inflammatory diseases. Lay summary: Liver inflammation and injury induced by ischaemia and reperfusion (the absence of blood flow to the liver tissue followed by the resupply of blood) is a significant cause of hepatic dysfunction and failure following liver transplantation, resection, and haemorrhagic shock. Herein, we uncover an underlying mechanism that contributes to liver inflammation and cell death in this setting and could be a therapeutic target in stress-induced liver inflammatory injury.

5.
Hepatology ; 74(3): 1560-1577, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33765345

RESUMO

BACKGROUND AND AIMS: The cluster of differentiation 47 (CD47)-signal regulatory protein alpha (SIRPα) signaling pathway plays important roles in immune homeostasis and tissue inflammatory response. Activation of the Hedgehog/smoothened (SMO)/GLI family zinc finger 1 (Gli1) pathway regulates cell growth, differentiation, and immune function. However, it remains unknown whether and how the CD47-SIRPα interaction may regulate Hedgehog/SMO/Gli1 signaling in mesenchymal stem cell (MSC)-mediated immune regulation during sterile inflammatory liver injury. APPROACH AND RESULTS: In a mouse model of ischemia/reperfusion (IR)-induced sterile inflammatory liver injury, we found that adoptive transfer of MSCs increased CD47 expression and ameliorated liver IR injury. However, deletion of CD47 in MSCs exacerbated IR-induced liver damage, with increased serum ALT levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators. MSC treatment augmented SIRPα, Hedgehog/SMO/Gli1, and Notch1 intracellular domain (NICD), whereas CD47-deficient MSC treatment reduced these gene expressions in IR-stressed livers. Moreover, disruption of myeloid SMO or Notch1 increased IR-triggered liver inflammation with diminished Gli1 and NICD, but enhanced NIMA related kinase 7 (NEK7) and NLR family pyrin domain containing 3 (NLRP3) activation in MSC-transferred mice. Using a MSC/macrophage co-culture system, we found that MSC CD47 and macrophage SIRPα expression were increased after LPS stimulation. The CD47-SIRPα interaction increased macrophage Gli1 and NICD nuclear translocation, whereby NICD interacted with Gli1 and regulated its target gene Dvl2 (dishevelled segment polarity protein 2), which in turn inhibited NEK7/NLRP3 activity. CONCLUSIONS: The CD47-SIRPα signaling activates the Hedgehog/SMO/Gli1 pathway, which controls NEK7/NLRP3 activity through a direct interaction between Gli1 and NICD. NICD is a coactivator of Gli1, and the target gene Dvl2 regulated by the NICD-Gli1 complex is crucial for the modulation of NLRP3-driven inflammatory response in MSC-mediated immune regulation. Our findings provide potential therapeutic targets in MSC-mediated immunotherapy of sterile inflammatory liver injury.


Assuntos
Antígeno CD47/imunologia , Proteínas Hedgehog/imunologia , Inflamação/imunologia , Fígado/imunologia , Células-Tronco Mesenquimais/imunologia , Receptores Imunológicos/imunologia , Traumatismo por Reperfusão/imunologia , Receptor Smoothened/imunologia , Proteína GLI1 em Dedos de Zinco/imunologia , Alanina Transaminase/sangue , Animais , Proteínas Desgrenhadas/imunologia , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Macrófagos/imunologia , Transplante de Células-Tronco Mesenquimais , Camundongos , Quinases Relacionadas a NIMA/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptor Notch1/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
6.
Cell Death Differ ; 28(5): 1705-1719, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33288903

RESUMO

Foxo1 transcription factor is an evolutionarily conserved regulator of cell metabolism, oxidative stress, inflammation, and apoptosis. Activation of Hedgehog/Gli signaling is known to regulate cell growth, differentiation, and immune function. However, the molecular mechanisms by which interactive cell signaling networks restrain oxidative stress response and necroptosis are still poorly understood. Here, we report that myeloid-specific Foxo1 knockout (Foxo1M-KO) mice were resistant to oxidative stress-induced hepatocellular damage with reduced macrophage/neutrophil infiltration, and proinflammatory mediators in liver ischemia/reperfusion injury (IRI). Foxo1M-KO enhanced ß-catenin-mediated Gli1/Snail activity, and reduced receptor-interacting protein kinase 3 (RIPK3) and NIMA-related kinase 7 (NEK7)/NLRP3 expression in IR-stressed livers. Disruption of Gli1 in Foxo1M-KO livers deteriorated liver function, diminished Snail, and augmented RIPK3 and NEK7/NLRP3. Mechanistically, macrophage Foxo1 and ß-catenin colocalized in the nucleus, whereby the Foxo1 competed with T-cell factor (TCF) for interaction with ß-catenin under inflammatory conditions. Disruption of the Foxo1-ß-catenin axis by Foxo1 deletion enhanced ß-catenin/TCF binding, activated Gli1/Snail signaling, leading to inhibited RIPK3 and NEK7/NLRP3. Furthermore, macrophage Gli1 or Snail knockout activated RIPK3 and increased hepatocyte necroptosis, while macrophage RIPK3 ablation diminished NEK7/NLRP3-driven inflammatory response. Our findings underscore a novel molecular mechanism of the myeloid Foxo1-ß-catenin axis in regulating Hedgehog/Gli1 function that is key in oxidative stress-induced liver inflammation and necroptosis.


Assuntos
Proteína Forkhead Box O1/metabolismo , Proteínas Hedgehog/metabolismo , Inflamassomos/metabolismo , beta Catenina/metabolismo , Animais , Humanos , Camundongos , Estresse Oxidativo
8.
Front Physiol ; 10: 325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30971953

RESUMO

This study evaluated the mitigating effects of dietary chlorogenic acid (CGA) on colon damage and the bacterial profile in a mouse model of dextran sulfate sodium (DSS)-induced colitis. C57BL/6J mice were randomly assigned to receive one of the following treatments: (i) basal diet; (ii) basal diet with 2% CGA; (iii) basal diet with 2.5% DSS or (iv) basal diet with 2% CGA and 2.5% DSS. Following a 2-week pre-treatment period, mice in the DSS and CGA-DSS groups received 2.5% DSS in drinking water for 5 days, while the other two groups received sterile water. Compared to DSS alone, CGA was found to reduce the disease activity index, myeloperoxidase activity and tumor necrosis factor-α levels in colon tissues (P < 0.05). CGA also ameliorated DSS-induced inflammatory responses, reduced colon shortening and decreased the histological scores (P < 0.05). In an evaluation of the relative abundances of bacteria in the fecal microbiota, we found that CGA reversed the decrease in diversity caused by DSS and improved the relative abundance of organisms in the genus Lactobacillus (P < 0.05). These results indicate that CGA maintains intestinal health and reduces DSS-induced colon injury by decreasing the production of pro-inflammatory cytokines and restoring intestinal microbial diversity.

9.
Biomed Res Int ; 2019: 8676410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30719449

RESUMO

IRW (Ile-Arg-Trp), a bioactive peptide isolated from egg ovotransferrin, has been shown to exert anti-inflammatory effects. In this study, the effects of IRW on inflammatory cytokines and microbiota were explored in human umbilical vein endothelial cells (HUVECs) and a lipopolysaccharide (LPS)-induced rat model of inflammatory peritonitis. Rats were injected intraperitoneally with LPS to establish peritonitis. HUVECs were exposed to IRW for 12 h before introducing LPS. Notably, IRW exerted beneficial effects against LPS-induced peritonitis, specifically, by reducing the serum levels of tumour necrosis factor (TNF)-α and interleukin (IL)-6 and myeloperoxidase (MPO) activity (P<0.05). A faecal microbiota analysis revealed that IRW significantly increased the Shannon and decreased the Simpson indices (P<0.05). Furthermore, IRW treatment significantly inhibited the LPS-induced enhancement of TNF-α, IL-8, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) expression in HUVECs (P<0.05). In conclusion, IRW supplementation inhibited the inflammatory mediator synthesis and LPS-induced inflammatory responses and influenced the gut microbiota.


Assuntos
Anti-Inflamatórios/farmacologia , Conalbumina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Peptídeos/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Peritonite , Peroxidase/metabolismo , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
10.
J Nat Med ; 72(3): 715-723, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680964

RESUMO

Berberine (BBR) has been demonstrated to protect against renal ischemia/reperfusion injury; however, the underlying molecular mechanism is largely unknown. In the present study, we examined the role of silent information regulator 1 (Sirt1)/p53 in the protective effect of BBR on hypoxia/reoxygenation (H/R)-mediated mitochondrial dysfunction in rat renal tubular epithelial cells (NRK-52E cells). NRK-52E cells were preconditioned with small interfering RNA targeting Sirt1 (Sirt1-siRNA) and BBR before subjected to H/R. Cell damage was assessed by CCK8 assay and detection of oxidative parameters. The apoptotic rate was determined by flow cytometry and Hoechst 33258 staining. The expression of apoptotic markers, Sirt1, p53 and the translocation of p53 were examined by Western blotting assay. Nuclear p53 deacetylation by Sirt1 was detected using immunoprecipitation. Compared with the H/R group, BBR pretreatment increased cell viability and inhibited mitochondrial oxidative stress and apoptosis. Protein expression of Sirt1 was also enhanced along with a reduction of p53. Furthermore, both nuclear translocation of p53 and its acetylation were inhibited in NRK-52E cells pretreated with BBR. However, the knockdown of Sirt1 counteracted the renoprotection of BBR. BBR preconditioning protects rat renal tubular epithelial cells against H/R-induced mitochondrial dysfunction via regulating the Sirt1/p53 pathway.


Assuntos
Berberina/uso terapêutico , Hipóxia Celular/efeitos dos fármacos , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Berberina/farmacologia , Humanos , Substâncias Protetoras/farmacologia , Transfecção
11.
Transplantation ; 101(10): 2385-2390, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28319568

RESUMO

BACKGROUND: Pediatric living donor liver transplantation is associated with slight alteration in cardiac enzymes without ongoing acute cardiac injury, but available information about the significance of these changes is limited. The aims of this study were to analyze the link between the anomalies of intraoperative serum cardiac troponin I (cTnI) and acute lung injury during the first week after liver transplantation. METHODS: In this retrospective study, 123 children suffering from biliary atresia were enrolled. Several perioperative variables, particularly cTnI before operation and at 30 minutes of neohepatic phase were recorded. Sixty-four recipients were divided into high cTnI group (≥0.07 ng/mL) and 59 recipients composed normal cTnI group (<0.07 ng/mL). The clinical data between 2 groups were compared and the association between serum cTnI level and acute lung injury after living donor liver transplantation were evaluated by univariate and multivariate logistic regression analyses. RESULTS: The percentage of acute lung injury after pediatric living donor liver transplantation among high cTnI group and normal cTnI group was 34.3% and 11.9%, respectively. Intratransplant cTnI ≥ 0.07 ng/mL (odds ratio [OR], 3.475; 95% confidence interval [CI], 1.114-10.842) was the risk factors for acute lung injury after transplantation. The value of cTnI showed the close correlation with preoperative bilirubin (OR, 1.005; 95% CI, 1.002-1.008) and pretransplant albumin (OR, 0.915; 95% CI, 0.849-0.986). CONCLUSIONS: Intraoperative cTnI elevation was the significant prognostic risk factor in acute lung injury after pediatric living-donor liver transplantation for children with biliary atresia. And the value of cTnI was associated with preoperative bilirubin and albumin level.


Assuntos
Atresia Biliar/cirurgia , Transplante de Fígado/métodos , Doadores Vivos , Troponina I/sangue , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/etiologia , Adolescente , Fatores Etários , Atresia Biliar/sangue , Atresia Biliar/diagnóstico , Bilirrubina/sangue , Biomarcadores/sangue , Distribuição de Qui-Quadrado , Criança , Feminino , Humanos , Período Intraoperatório , Transplante de Fígado/efeitos adversos , Modelos Logísticos , Masculino , Análise Multivariada , Razão de Chances , Estudos Retrospectivos , Fatores de Risco , Albumina Sérica/metabolismo , Albumina Sérica Humana , Fatores de Tempo , Resultado do Tratamento , Regulação para Cima
12.
Biochem Biophys Res Commun ; 483(2): 885-891, 2017 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-28077277

RESUMO

The effects and mechanism of berberine (BBR) on hepatic injury after orthotopic liver transplantation (OLT) have not been well characterized. We examined the role of Sirt1/FoxO3α axis in the protective effect of BBR on ischemia/reperfusion injury after OLT. Adult male Wistar rats were randomly allocated into four groups: Sham, OLT, OLT with BBR pretreatment (BBR), OLT with BBR and Sirt1 inhibitor (EX527) pretreatment group (EX527). The liver function and oxidative stress level were measured by biochemical and histopathologic examinations. The formation of autophagosome was observed by transmission electron microscopy. The apoptotic rate was determined by TUNEL analysis and the apoptotic mRNA expression. The expression of Sirt1, FoxO3α, Beclin-1, LC3-II/LC3-I, p62 and the acetylation of FoxO3α were assayed by western blot assay and immunoprecipitation. Compared with the OLT group, BBR dramatically attenuated the histopathologic damage, restored the liver function, and decreased the oxidative stress level. Simultaneously, BBR significantly ameliorated apoptosis by decreasing the apoptotic rate and the expression of apoptotic mRNA in rats subjected to OLT. The level of Beclin-1 and LC3-II/LC3-I were upregulated with the inhibition of p62. The deacetylation of FoxO3α by Sirt1 was enhanced in the nuclear of liver after pretreated with BBR. However, the inhibition of Sirt1 by EX527 counteracted the protective effects of BBR. Thus, BBR preconditioning promotes liver transplant ischemia/reperfusion injury partly via activating Sirt1/FoxO3α mediated autophagy.


Assuntos
Berberina/farmacologia , Proteína Forkhead Box O3/metabolismo , Transplante de Fígado/efeitos adversos , Fígado/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Sirtuína 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carbazóis/farmacologia , Fígado/lesões , Fígado/metabolismo , Masculino , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Sirtuína 1/antagonistas & inibidores
13.
J Gene Med ; 14(12): 746-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23071006

RESUMO

BACKGROUND: Gutless adenovirus (helper-dependent adenoviral vector; HDAd) and lentiviral vectors (LV) are attractive vectors for the gene therapy of muscle diseases. Because the organization of their DNA (episomal versus integrated) differs, we investigated whether the strength and specificity of ΔUSEx3, a novel muscle-specific promoter previously tested with plasmid, were maintained in the context of these vectors. METHODS: Two HDAds expressing ß-galactosidase regulated by ΔUSEx3 or CAG [cytomegalovirus (CMV) enhancer/ß-actin promoter], and three LV expressing green fluorescent protein regulated by ΔUSEx3, CMV or a modified skeletal α-actin promoter (SPcΔ5-12), were constructed. Gene expression was compared in cell culture and after intravenous (HDAd only) and intramuscular injection of mice. RESULTS: Irrespective of the vector used, ΔUSEx3 remained poorly active in nonmuscle cells and tissues. In myotubes, ΔUSEx3 was as strong as CMV and SPcΔ5-12, although it was ten-fold weaker than CAG, a proven powerful promoter in muscle. In cell culture, ΔUSEx3 activity in the context of LV was more stable than CMV, indicating it is less prone to silencing. In the context of HDAd, the behavior of ΔUSEx3 in skeletal muscle mirrored that of cell culture (10% of the CAG activity and half the number of transduced fibers). Surprisingly, in muscles treated with LV, ΔUSEx3 activity was five-fold lower than SPcΔ5-12. CONCLUSIONS: The data obtained in the present study confirm that ΔUSEx3 is a strong and robust muscle-specific promoter in the context of HDAd (cell culture and in vivo) and LV (cell culture). However, it was less efficient in vivo in the context of LV.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Lentivirus/genética , Músculo Esquelético/metabolismo , Regiões Promotoras Genéticas , Troponina I/genética , Animais , Linhagem Celular , Citomegalovirus/genética , Elementos Facilitadores Genéticos , Expressão Gênica , Ordem dos Genes , Humanos , Camundongos , Especificidade de Órgãos/genética , Troponina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...