Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Immun Ageing ; 21(1): 48, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026350

RESUMO

BACKGROUND: Aging is associated with significant structural and functional changes in the spleen, leading to immunosenescence, yet the detailed effects on splenic vascular endothelial cells (ECs) and their immunomodulatory roles are not fully understood. In this study, a single-cell RNA (scRNA) atlas of EC transcriptomes from young and aged mouse spleens was constructed to reveal age-related molecular changes, including increased inflammation and reduced vascular development and also the potential interaction between splenic endothelial cells and immune cells. RESULTS: Ten clusters of splenic endothelial cells were identified. DEGs analysis across different EC clusters revealed the molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the loss in vascular development function of aged ECs. Notably, four EC clusters with immunological functions were identified, suggesting an Endothelial-to-Immune-like Cell Transition (EndICLT) potentially driven by aging. Pseudotime analysis of the Immunology4 cluster further indicated a possible aging-induced transitional state, potentially initiated by Ctss gene activation. Finally, the effects of aging on cell signaling communication between different EC clusters and immune cells were analyzed. CONCLUSIONS: This comprehensive atlas elucidates the complex interplay between ECs and immune cells in the aging spleen, offering new insights into endothelial heterogeneity, reprogramming, and the mechanisms of immunosenescence.

2.
iScience ; 27(3): 109213, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439953

RESUMO

Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.

3.
Commun Biol ; 6(1): 1048, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848613

RESUMO

Behect's disease is a chronic vasculitis characterized by complex multi-organ immune aberrations. However, a comprehensive understanding of the gene-regulatory profile of peripheral autoimmunity and the diverse immune responses across distinct cell types in Behcet's disease (BD) is still lacking. Here, we present a multi-omic single-cell study of 424,817 cells in BD patients and non-BD individuals. This study maps chromatin accessibility and gene expression in the same biological samples, unraveling vast cellular heterogeneity. We identify widespread cell-type-specific, disease-associated active and pro-inflammatory immunity in both transcript and epigenomic aspects. Notably, integrative multi-omic analysis reveals putative TF regulators that might contribute to chromatin accessibility and gene expression in BD. Moreover, we predicted gene-regulatory networks within nominated TF activators, including AP-1, NF-kB, and ETS transcript factor families, which may regulate cellular interaction and govern inflammation. Our study illustrates the epigenetic and transcriptional landscape in BD peripheral blood and expands understanding of potential epigenomic immunopathology in this disease.


Assuntos
Síndrome de Behçet , Vasculite , Humanos , Síndrome de Behçet/genética , Transcriptoma , Cromatina/genética , Perfilação da Expressão Gênica
4.
J Occup Environ Med ; 65(11): e695-e702, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37621026

RESUMO

OBJECTIVE: This study investigated the association of work-related sedentary behavior with mental health and work engagement among white- and blue-collar workers. METHODS: An Internet survey was conducted among 1600 workers aged 20 to 59 years. A total of 1213 valid responses were analyzed to examine the association of work-related sedentary behavior with mental health and work engagement. RESULTS: Higher level of occupational sedentary behavior significantly associated with poorer mental health and lower work engagement among white-collar workers. Considering the effect of occupation, association of sedentary behavior with mental health disappeared, whereas association with work engagement remained for white-collar workers. CONCLUSIONS: Our result suggested the importance of decreasing work-related sedentary behavior for enhancing work engagement regardless of the occupation for white-collar workers. Further study is needed to confirm the association between these variables for blue-collar workers.


Assuntos
Saúde Mental , Comportamento Sedentário , Engajamento no Trabalho , Humanos , População do Leste Asiático , Ocupações
5.
iScience ; 26(8): 107492, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37609634

RESUMO

Polyethylene terephthalate (PET) is the most produced polyester plastic; its waste has a disruptive impact on the environment and ecosystem. Here, we report a catalytic depolymerization of PET into bis(2-hydroxyethyl) terephthalate (BHET) using molecule oxygen (O2)-assisted in defect-rich ZnO. At air, the PET conversion rate, the BHET yield, and the space-time yield are 3.5, 10.6, and 10.6 times higher than those in nitrogen, respectively. Combining structural characterization with the results of DFT calculations, we conclude that the (100) facet of defect-rich ZnO nanosheets conducive to the formation of reactive oxygen species (∗O2-) and Zn defect, promotes the PET breakage of the ester bond and thus complete the depolymerization processed. This approach demonstrates a sustainable route for PET depolymerization by molecule-assisted defect engineering.

6.
Heliyon ; 9(8): e18324, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554834

RESUMO

Aging is the strongest risk factor for cardiovascular disease, with progressive decline in the function of vascular endothelial cells (ECs) with age. Systematic analyses of the effects of aging on different cardiac EC types remain limited. Here, we constructed a scRNA atlas of EC transcriptomes in young and old mouse hearts. We identified 10 EC subclusters. The multidimensionally differential genes (DEGs) analysis across different EC clusters shows molecular changes with aging, showing the increase in the overall inflammatory microenvironment and the decrease in angiogenesis and cytoskeletal support capacity of aged ECs. And we performed an in-depth analysis of 3 special ECs, Immunology, Proliferating and Angiogenic. The Immunology EC seems highly associated with some immune regulatory functions, which decline with aging at different degrees. Analysis of two types of neovascular ECs, Proliferating, Angiogenic, implied that Angiogenic ECs can differentiate into multiple EC directions after initially originating from proliferating ECs. And aging leads to a decrease in the ability of vascular angiogenesis and differentiation. Finally, we summarized the effects of aging on cell signaling communication between different EC clusters. This cardiac EC atlas offers comprehensive insights into the molecular regulations of cardiovascular aging, and provides new directions for the prevention and treatment of age-related cardiovascular disease.

7.
Ecol Lett ; 26(7): 1145-1156, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37127410

RESUMO

Although social species as diverse as humans and ants are among the most abundant organisms on Earth, animals cooperate and form groups for many reasons. How these different reasons for grouping affect a species' ecological dominance remains unknown. Here we use a theoretical model to demonstrate that the different fitness benefits that animals receive by forming groups depend on the quality of their environment, which in turn impacts their ecological dominance and resilience to global change. We then test the model's key predictions using phylogenetic comparative analysis of >6500 bird species. As predicted, we find that cooperative breeders occurring in harsh and fluctuating environments have larger ranges and greater abundances than non-cooperative breeders, but cooperative breeders occurring in benign and stable environments do not. Using our model, we further show that social species living in harsh and fluctuating environments will be less vulnerable to climate change than non-social species.


Assuntos
Formigas , Comportamento Social , Animais , Humanos , Filogenia , Reprodução , Aves , Comportamento Cooperativo
8.
Front Genet ; 14: 1175716, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214419

RESUMO

Endothelial cells (ECs) with senescence-associated secretory phenotypes (SASP) have been identified as a key mechanism of aging that contributes to various age-related kidney diseases. In this study, we used single-cell RNA sequencing (scRNA-seq) to create a transcriptome atlas of murine renal ECs and identify transcriptomic changes that occur during aging. We identified seven different subtypes of renal ECs, with glomerular ECs and angiogenic ECs being the most affected by senescence. We confirmed our scRNA-seq findings by using double immunostaining for an EC marker (CD31) and markers of specialized EC phenotypes. Our analysis of the dynamics of capillary lineage development revealed a chronic state of inflammation and compromised glomerular function as prominent aging features. Additionally, we observed an elevated pro-inflammatory and pro-coagulant microenvironment in aged glomerular ECs, which may contribute to age-related glomerulosclerosis and renal fibrosis. Through intercellular communication analysis, we also identified changes in signaling involved in immune regulation that may contribute to a hostile microenvironment for renal homeostasis and function. Overall, our findings provide new insights into the mechanisms of aging in the renal endothelium and may pave the way for the discovery of diagnostic biomarkers and therapeutic interventions against age-related kidney diseases.

9.
Science ; 380(6643): 416-420, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37053263

RESUMO

Ultraviolet light from early galaxies is thought to have ionized gas in the intergalactic medium. However, there are few observational constraints on this epoch because of the faintness of those galaxies and the redshift of their optical light into the infrared. We report the observation, in JWST imaging, of a distant galaxy that is magnified by gravitational lensing. JWST spectroscopy of the galaxy, at rest-frame optical wavelengths, detects strong nebular emission lines that are attributable to oxygen and hydrogen. The measured redshift is z = 9.51 ± 0.01, corresponding to 510 million years after the Big Bang. The galaxy has a radius of [Formula: see text] parsecs, which is substantially more compact than galaxies with equivalent luminosity at z ~ 6 to 8, leading to a high star formation rate surface density.

10.
ChemSusChem ; 16(9): e202300154, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36862090

RESUMO

Developing efficient and eco-friendly catalysts for selective degradation of waste polyethylene terephthalate (PET) is critical to the circular economy of plastics. Herein, we report the first monatomic oxygen anion (O- )-rich MgO-Ni catalyst based on a combined theoretical and experimental approach, which achieves a bis(hydroxyethyl) terephthalate yield of 93.7 % with no heavy metal residues detected. DFT calculations and electron paramagnetic resonance characterization indicate that Ni2+ doping not only reduces the formation energy of oxygen vacancies, but also enhances local electron density to facilitate the conversion of adsorbed oxygen into O- . O- plays a crucial role in the deprotonation of ethylene glycol (EG) to EG- (exothermic by -0.6 eV with an activation barrier of 0.4 eV), which is proved effective to break the PET chain via nucleophilic attack on carbonyl carbon. This work reveals the potential of alkaline earth metal-based catalysts in efficient PET glycolysis.

11.
Invest Ophthalmol Vis Sci ; 64(3): 30, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36943152

RESUMO

Purpose: Corneal epithelial homeostasis is maintained by coordinated gene expression across distinct cell populations, but the gene regulatory programs underlying this cellular diversity remain to be characterized. Here we applied single-cell multi-omics analysis to delineate the gene regulatory profile of mouse corneal epithelial cells under normal homeostasis. Methods: Single cells isolated from the cornea epithelium (with marginal conjunctiva) of adult mice were subjected to scRNA-seq and scATAC-seq using the 10×Genomics platform. Cell types were clustered by the graph-based visualization method uniform manifold approximation and projection and unbiased computational informatics analysis. The scRNA-seq and scATAC-seq datasets were integrated following the integration pipeline described in ArchR and Seurat. Results: We characterized diverse corneal epithelial cell types based on gene expression signatures and chromatin accessibility. We found that cell type-specific accessibility regions were mainly located at distal regions, suggesting essential roles of distal regulatory elements in determining corneal epithelial cell diversity. Trajectory analyses revealed a continuum of cell state transition and higher coordination between transcription factor (TF) motif accessibility and gene expression during corneal epithelial cell differentiation. By integrating transcriptomic and chromatin accessibility analysis, we identified cell type-specific and shared gene regulation programs. We also uncovered critical TFs driving corneal epithelial cell differentiation, such as nuclear factor I (NFI) family members, Rarg, Elf3. We found that nuclear factor-κB (NF-κB) family members were positive TFs in limbal cells and some superficial cells, but they were involved in regulating distinct biological processes. Conclusions: Our study presents a comprehensive gene regulatory landscape of mouse cornea epithelial cells, and provides valuable foundations for future investigation of corneal epithelial homeostasis in the context of cornea pathologies and regenerative medicine.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Cromatina , Regulação da Expressão Gênica , Células Epiteliais
12.
Hepatol Commun ; 7(2): e0021, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724124

RESUMO

Endothelial cell (EC) function declines with age and contributes to the development of many vascular-related disease processes. Currently, the effects of aging on the molecular regulatory mechanisms of liver ECs have not been fully elucidated. Here, we employed single-cell RNA sequencing to map the transcriptome of ECs and analyzed their relationship with aging. We identified 8 different EC subtypes, interestingly, 2 of which were specially expressed in aged mice ECs namely aged capillary ECs (Aged ECs) and pro-inflammation capillary ECs (Proinfla.ECs). Double immunostaining for an EC marker (Cd31) and a marker of these specialized EC phenotypes confirmed the single-cell RNA sequencing data. Gene ontology analysis revealed that Aged ECs and Proinfla.ECs were associated with inflammatory response. Then we found that liver proliferating capillary ECs (Prolife.ECs) were most affected by senescence. Single-cell transcript analysis suggests that Prolife.ECs and angiogenic capillary ECs may form a poor microenvironment that promotes angiogenesis and tumorigenesis. Pseudo-temporal trajectories revealed that Prolife.ECs have different differentiation pathways in young and aged mice. In aged mice, Prolife.ECs could specifically differentiate into an unstable state, which was mainly composed of angiogenic capillary ECs. Intercellular communication revealed inflammatory activation in old group. Overall, this work compared the single-cell RNA profiles of liver ECs in young and aged mice. These findings provide a new insight into liver aging and its molecular mechanisms, and further exploration of Aged ECs and Proinfla.ECs may help to elucidate the molecular mechanisms associated with senescence.


Assuntos
Células Endoteliais , Fígado , Animais , Camundongos , Diferenciação Celular , Análise de Sequência de RNA
13.
Front Physiol ; 14: 1281506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235385

RESUMO

Objectives: To develop and validate an MRI radiomics-based decision support tool for the automated grading of cervical disc degeneration. Methods: The retrospective study included 2,610 cervical disc samples of 435 patients from two hospitals. The cervical magnetic resonance imaging (MRI) analysis of patients confirmed cervical disc degeneration grades using the Pfirrmann grading system. A training set (1,830 samples of 305 patients) and an independent test set (780 samples of 130 patients) were divided for the construction and validation of the machine learning model, respectively. We provided a fine-tuned MedSAM model for automated cervical disc segmentation. Then, we extracted 924 radiomic features from each segmented disc in T1 and T2 MRI modalities. All features were processed and selected using minimum redundancy maximum relevance (mRMR) and multiple machine learning algorithms. Meanwhile, the radiomics models of various machine learning algorithms and MRI images were constructed and compared. Finally, the combined radiomics model was constructed in the training set and validated in the test set. Radiomic feature mapping was provided for auxiliary diagnosis. Results: Of the 2,610 cervical disc samples, 794 (30.4%) were classified as low grade and 1,816 (69.6%) were classified as high grade. The fine-tuned MedSAM model achieved good segmentation performance, with the mean Dice coefficient of 0.93. Higher-order texture features contributed to the dominant force in the diagnostic task (80%). Among various machine learning models, random forest performed better than the other algorithms (p < 0.01), and the T2 MRI radiomics model showed better results than T1 MRI in the diagnostic performance (p < 0.05). The final combined radiomics model had an area under the receiver operating characteristic curve (AUC) of 0.95, an accuracy of 89.51%, a precision of 87.07%, a recall of 98.83%, and an F1 score of 0.93 in the test set, which were all better than those of other models (p < 0.05). Conclusion: The radiomics-based decision support tool using T1 and T2 MRI modalities can be used for cervical disc degeneration grading, facilitating individualized management.

14.
Front Psychol ; 13: 1012796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389461

RESUMO

The main purpose of this paper is to investigate the happiness factors and assess the performance of machine learning techniques on predicting the happiness levels of European immigrants and natives. Two types of machine learning methods, Ordinal Logistic Regression (OLR) and Artificial Neural Network (ANN), are employed for analytical modeling. Our results with a total sample size of 196,724 respondents from nine rounds of the European Social Survey (ESS) indicate that the determinants of happiness for immigrants and natives are significantly inconsistent. Therefore, variables should be specifically selected to predict the happiness levels of these two different groups. The sensitivity analysis shows that satisfaction with life, subjective general health, and the highest level of education are the three most prominent determinants that contribute to the happiness of immigrants and natives. The overall accuracies of OLR and ANN baseline models are >80%. This can be further improved by building models for each individual country. The application of OLR and ANN implies that machine learning algorithms can be a useful tool for predicting happiness levels. The greater knowledge of migration and happiness will allow us to better understand the decision-making processes and construct more effective policies.

15.
Commun Biol ; 5(1): 506, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618758

RESUMO

The barrier to curing Vogt-Koyanagi-Harada disease (VKH) is thought to reside in a lack of understanding in the roles and regulations of peripheral inflammatory immune cells. Here we perform a single-cell multi-omic study of 166,149 cells in peripheral blood mononuclear cells from patients with VKH, profile the chromatin accessibility and gene expression in the same blood samples, and uncover prominent cellular heterogeneity. Immune cells in VKH blood are highly activated and pro-inflammatory. Notably, we describe an enrichment of transcription targets for nuclear factor kappa B in conventional dendritic cells (cDCs) that governed inflammation. Integrative analysis of transcriptomic and chromatin maps shows that the RELA in cDCs is related to disease complications and poor prognosis. Ligand-receptor interaction pairs also identify cDC as an important predictor that regulated multiple immune subsets. Our results reveal epigenetic and transcriptional dynamics in auto-inflammation, especially the cDC subtype that might lead to therapeutic strategies in VKH.


Assuntos
Síndrome Uveomeningoencefálica , Cromatina/genética , Humanos , Inflamação , Leucócitos , Leucócitos Mononucleares , Síndrome Uveomeningoencefálica/complicações , Síndrome Uveomeningoencefálica/tratamento farmacológico , Síndrome Uveomeningoencefálica/genética
16.
ACS Omega ; 7(51): 48301-48309, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36591144

RESUMO

Two-dimensional layered materials have attracted tremendous attention as photodetectors due to their fascinating features, including comprehensive coverage of band gaps, high potential in new-generation electronic devices, mechanical flexibility, and sensitive light-mass interaction. Currently, graphene and transition-metal dichalcogenides (TMDCs) are the most attractive active materials for constructing photodetectors. A growing number of emerging TMDCs applied in photodetectors bring up opportunities in the direct band gap independence with thickness. This study demonstrated for the first time a photodetector based on a few-layer Re x Mo1-x S2, which was grown by chemical vapor deposition (CVD) under atmospheric pressure. The detailed material characterizations were performed using Raman spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy (XPS) on an as-grown few-layer Re x Mo1-x S2. The results show that both MoS2 and ReS2 peaks appear in the Re x Mo1-x S2 Raman diagram. Re x Mo1-x S2 is observed to emit light at a wavelength of 716.8 nm. The electronic band structure of the few layers of Re x Mo1-x S2 calculated using the first-principles theory suggests that the band gap of Re x Mo1-x S2 is larger than that of ReS2 and smaller than that of MoS2, which is consistent with the photoluminescence results. The thermal stability of the few layers of Re x Mo1-x S2 was evaluated using Raman temperature measurements. It is found that the thermal stability of Re x Mo1-x S2 is close to those of pure ReS2 and MoS2. The fabricated Re x Mo1-x S2 photodetector shows a high response rate of 7.46 A W-1 under 365 nm illumination, offering a competitive performance to the devices based on TMDCs and graphenes. This study unambiguously distinguishes Re x Mo1-x S2 as a future candidate in electronics and optoelectronics.

17.
Cancers (Basel) ; 13(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34439241

RESUMO

Wild-type p53 is known as "the guardian of the genome" because of its function of inducing DNA repair, cell-cycle arrest, and apoptosis, preventing the accumulation of gene mutations. TP53 is highly mutated in cancer cells and most TP53 hotspot mutations are missense mutations. Mutant p53 proteins, encoded by these hotspot mutations, lose canonical wild-type p53 functions and gain functions that promote cancer development, including promoting cancer cell proliferation, migration, invasion, initiation, metabolic reprogramming, angiogenesis, and conferring drug resistance to cancer cells. Among these hotspot mutations, p53-R175H has the highest occurrence. Although losing the transactivating function of the wild-type p53 and prone to aggregation, p53-R175H gains oncogenic functions by interacting with many proteins. In this review, we summarize the gain of functions of p53-R175H in different cancer types, the interacting proteins of p53-R175H, and the downstream signaling pathways affected by p53-R175H to depict a comprehensive role of p53-R175H in cancer development. We also summarize treatments that target p53-R175H, including reactivating p53-R175H with small molecules that can bind to p53-R175H and alter it into a wild-type-like structure, promoting the degradation of p53-R175H by targeting heat-shock proteins that maintain the stability of p53-R175H, and developing immunotherapies that target the p53-R175H-HLA complex presented by tumor cells.

18.
Mater Sci Eng C Mater Biol Appl ; 119: 111635, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321673

RESUMO

ZnO eugenol-based materials are widely used for restoration of caries cavity, apical retrograde filling and root canal sealer. Their effects on apical bone healing await investigation. The toxic mechanisms of ZnO particles and nanoparticles to MG-63 osteoblastic cells were studied. We found the different morphology and size of various particles as observed by scanning electron microscope. Particles of Canals and Roth801 were larger than ZnO-205532 microparticles and ZnO-677450 nanoparticles. Four ZnO particles showed cytotoxicity (>25 µg/ml) as analyzed by MTT. Transmission electron microscope found intracellular vacuoles with particle content. Exposure to ZnO particles induced ROS production and cell cycle arrest as studied by DCF and propidium iodide flow cytometry. ZnO particles activated ATM, ATR, Chk1, Chk2, γ-H2AX, ERK and p38 phosphorylation as detected by immunofluorescent staining and western blotting. The protein expression of cdc2, cyclin B1 and cdc25C were decreased, whereas GADD45α and hemeoxygenase-1 (HO-1) were stimulated. ZnO particles' cytotoxicity to MG63 cells was prevented by N-acetylcysteine (NAC), but not CGK733, AZD7762, U0126 and SB203580. ZnO showed little effect on IL-8 and sICAM-1 secretion. These results indicated that ZnO particles are toxic to osteoblasts. ZnO particles' toxicity were related to ROS, and DNA damage responses, checkpoint kinases, cell cycle arrest, ERK and p38 signaling, but not IL-8 and ICAM-1. These results were useful for materials' development and promote apical healing. Dentists should avoid of extruding ZnO-based sealers excessively over root apex and prevent residual ZnO-based retrograde filling materials in apical area during endodontic practice.


Assuntos
Nanopartículas , Óxido de Zinco , Osteoblastos , Fosforilação , Transdução de Sinais
19.
Int J Comput Assist Radiol Surg ; 16(1): 151-160, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130999

RESUMO

PURPOSE: Virtual surgery system can provide us a realistic and immersive training environment, in which haptic force-feedback gives operators 'touching feeling.' Appropriate deformation models of soft and hard tissues are required for the achievement of real-time haptic feedback. To improve accuracy of modeling and haptic feedback simulation for maxillofacial virtual surgery, mechanical characteristics of soft and hard tissues should be explored. METHODS: Craniofacial soft tissues from one male and female cadavers were divided into two layers: skin and muscle. Maxillofacial tissues were divided into frontal, chin, temporalis, masseter regions. Insertion and cutting process were conducted using VMX42 5-axis linkage system and recorded by piezoelectric dynamometer. Maximum stiffness values were analyzed, and insertion curves before puncture were fitted using a polynomial model. Elasticity modulus and hardness of maxillofacial hard tissues were measured and analyzed using Berkovich nanoindentation. RESULTS: Tissues in different maxillofacial regions, as well as from different layers (skin and muscle), displayed various mechanical performance. Maximum stiffness values and cutting force of soft tissues in male and female had significant difference. The third-order polynomial was demonstrated to fit the insertion curves well before puncture. Furthermore, elasticity modulus and hardness of enamel were significantly greater than that of zygoma, maxilla and mandible. CONCLUSION: Mechanical properties of hard tissues are relatively stable, which can be applied in virtual surgery system for physical model construction. Insertion model and cutting force for soft tissues are meaningful and applicable and can be utilized to promote the accuracy of response for haptic feedback sensations.


Assuntos
Face/cirurgia , Retroalimentação Sensorial , Mandíbula/cirurgia , Treinamento por Simulação/métodos , Tato , Algoritmos , Simulação por Computador , Módulo de Elasticidade , Dureza , Humanos , Interface Usuário-Computador
20.
Ecol Lett ; 23(3): 467-475, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31912600

RESUMO

Although interspecific competition has long been recognised as a major driver of trait divergence and adaptive evolution, relatively little effort has focused on how it influences the evolution of intraspecific cooperation. Here we identify the mechanism by which the perceived pressure of interspecific competition influences the transition from intraspecific conflict to cooperation in a facultative cooperatively breeding species, the Asian burying beetle Nicrophorus nepalensis. We not only found that beetles are more cooperative at carcasses when blowfly maggots have begun to digest the tissue, but that this social cooperation appears to be triggered by a single chemical cue - dimethyl disulfide (DMDS) - emitted from carcasses consumed by blowflies, but not from control carcasses lacking blowflies. Our results provide experimental evidence that interspecific competition promotes the transition from intraspecific conflict to cooperation in N. nepalensis via a surprisingly simple social chemical cue that is a reliable indicator of resource competition between species.


Assuntos
Besouros , Animais , Cruzamento , Larva , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...